Skip to main content
Log in

New Connections Between Functions from Additive and Multiplicative Number Theory

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate new connections between the seemingly disparate branches of the additive and multiplicative number theory. Two infinite families of identities are proved in this context using an interplay of combinatorial and q-series methods. These general results are illustrated considering relationships between the gcd-sum function and integer partitions. Even if there is in the literature a large number of works in which many properties of the gcd-sum function are studied, connections between the gcd-sum function and integer partitions have not been remarked so far. Our general results can be used to provide new connections between the partitions and many classical special arithmetic functions often studied in multiplicative number theory: the Möbius function \(\mu (n)\), Euler’s totient \(\varphi (n)\), Jordan’s totient \(J_k(n)\), Liouville’s function \(\lambda (n)\), the von Mangoldt function \(\Lambda (n)\), the divisor function \(\sigma _x(n)\), and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: The Theory of Partitions. Addison-Wesley Publishing, New York (1976)

    MATH  Google Scholar 

  2. Bordellès, O.: A note on the average order of the gcd-sum function. J. Integer Seq. 10, Article 07.3.3 (2007)

  3. Bordellès, O.: Mean values of generalized gcd-sum and lcm-sum functions. J. Integer Seq. 10, Article 07.9.2 (2007)

  4. Bordellès, O.: The composition of the gcd and certain arithmetic functions. J. Integer Seq. 13, Article 10.7.1 (2010)

  5. Broughan, K.A.: The gcd-sum function. J. Integer Seq. 4, Article 01.2.2 (2001)

  6. Broughan, K.A.: The average order of the Dirichlet series of the gcd-sum function. J. Integer Seq. 10, Article 07.4.2 (2007)

  7. Cesàro, E.: Étude moyenne du plus grand commun diviseur de deux nombres. Ann. Mat. Pura Appl. (1) 13, 235–250 (1885)

    Article  MATH  Google Scholar 

  8. Chidambaraswamy, J., Sitaramachandrarao, R.: Asymptotic results for a class of arithmetical functions. Monatsh. Math. 99, 19–27 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, E.: Arithmetical functions of a greatest common divisor, I. Proc. Am. Math. Soc. 11, 164–171 (1960)

    MathSciNet  MATH  Google Scholar 

  10. Cohen, E.: Arithmetical functions of a greatest common divisor, III. Cesàro’s divisor problem. Proc. Glasgow Math. Assoc. 5, 67–75 (1961–1962)

  11. Cohen, E.: Arithmetical functions of a greatest common divisor, II. An alternative approach. Boll. Un. Mat. Ital. 17, 349–356 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Dickson, L.E.: History of the Theory of Numbers, vol. I. Chelsea, New York (1971)

    Google Scholar 

  13. Haukkanen, P.: Rational arithmetical functions of order \((2,1)\) with respect to regular convolutions. Portugal. Math. 56, 329–343 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Haukkanen, P.: On a gcd-sum function. Aequationes Math. 76, 168–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kiuchi, I.: Sums of averages of gcd-sum functions. J. Number Theory 176, 449–472 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Merca, M.: The Lambert series factorization theorem. Ramanujan J. 44(2), 417–435 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Merca, M., Schmidt, M.D.: A partition identity related to Stanley’s theorem. Am. Math. Mon (accepted, to appear)

  18. Merca, M., Schmidt, M.D.: The partition function \(p(n)\) in terms of the classical Möbius function. Ramanujan J. (accepted, to appear)

  19. Pillai, S.S.: On an arithmetic function. J. Annamalai Univ. 2, 243–248 (1933)

    MATH  Google Scholar 

  20. Sándor, J., Krámer, A.-V.: Über eine zahlentheoretische Funktion. Math. Morav. 3, 53–62 (1999)

    MATH  Google Scholar 

  21. Sivaramakrishnan, R.: On three extensions of Pillai’s arithmetic function \(\beta (n)\). Math. Stud. 39, 187–190 (1971)

    MathSciNet  MATH  Google Scholar 

  22. Schulte, J.: Über die Jordansche Verallgemeinerung der Eulerschen Funktion. Results Math. 36, 354–364 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tanigawa, Y., Zhai, W.: On the gcd-sum function. J. Integer Seq. 11, Article 08.2.3 (2008)

  24. Tóth, L.: The unitary analogue of Pillai’s arithmetical function. Collect. Math. 40, 19–30 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Tóth, L.: The unitary analogue of Pillai’s arithmetical function II. Notes Number Theory Discrete Math. 2, 40–46 (1996)

    MathSciNet  Google Scholar 

  26. Tóth, L.: A gcd-sum function over regular integers (mod \(n\)). J. Integer Seq. 12, Article 09.2.5 (2009)

  27. Tóth, L.: On the bi-unitary analogues of Eulers arithmetical function and the gcd-sum function. J. Integer Seq. 12, Article 09.5.2 (2009)

  28. Tóth, L.: A survey of gcd-sum functions. J. Integer Seq. 13, Article 10.8.1 (2010)

  29. Tóth, L.: Weighted gcd-sum functions. J. Integer Seq. 14, 11.7.7 (2011)

  30. Zhang, D., Zhai, W.: Mean values of a gcd-sum function over regular integers modulo \(n\). J. Integer Seq. 13, Article 10.4.7 (2010)

Download references

Acknowledgements

The author would like to thank the referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Merca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merca, M. New Connections Between Functions from Additive and Multiplicative Number Theory. Mediterr. J. Math. 15, 36 (2018). https://doi.org/10.1007/s00009-018-1091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1091-2

Keywords

Mathematics Subject Classification

Navigation