Skip to main content
Log in

The Positive Solutions for Integral Boundary Value Problem of Fractional p-Laplacian Equation with Mixed Derivatives

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of integral boundary value problems of fractional p-Laplacian equation, which involve both Riemann–Liouville fractional derivative and Caputo fractional derivative. By using the generalization of Leggett–Williams fixed point theorem, some new results on the existence of at least three positive solutions to the boundary value problems are obtained. Finally, some examples are presented to illustrate the extensive potential applications of our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B. V, Amsterdam (2006)

    MATH  Google Scholar 

  2. Diethelm, K.: Lectures Notes in Mathematics. The analysis of fractional differential equations. Springer, Berlin (2010)

    Google Scholar 

  3. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  4. Bashir, A., Ntouyas, S.K.: Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615–622 (2015)

    MathSciNet  Google Scholar 

  5. Regan, D.O., Samet, B.: Lyapunov-type inequalities for a class of fractional differential equations. J. Inequal. Appl. 2015, 247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ge, F.D., Kou, C.H.: Stability analysis by Krasnoselskii’s fixed point theorem for nonlinear fractional differential equations. Appl. Math. Comput. 257, 308–316 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Wang, J.R., Zhou, Y., Wei, W.: A class of fractional delay nonlinear integrodifferential controlled systems in Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 16, 4049–4059 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, L., Shen, C.F., Xie, D.P.: Multiple positive solutions for nonlinear boundary value problem of fractional order differential equation with the Riemann–Liouville derivative. Adv. Differ. Equ. 2014, 284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ntouyas, S.K., Tariboon, J., Thiramanus, P.: Mixed problems of fractional coupled systems of Riemann–Liouville differential equations and Hadamard integral conditions. J. Comput. Anal. Appl. 21, 813–828 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Ntouyas, S.K., Etemad, S.: On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 266, 235–243 (2015)

    MathSciNet  Google Scholar 

  11. Liu, X.P., Lin, L.G., Fang, H.Q.: Existence of positive solutions for nonlocal boundary value problem of fractional differential equation. Cent. Eur. J. Phy. 11, 1423–1432 (2013)

    Google Scholar 

  12. Jia, M., Liu, X.P.: Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions. Appl. Math. Comput. 232, 313–323 (2014)

    MathSciNet  Google Scholar 

  13. Leibenson, L.S.: General problem of the movement of acompressible fluid in a porous medium. Izvestiia Akademii Nauk Kirgizskoi SSSR 9, 7–10 (1983). (in Russian)

    MathSciNet  Google Scholar 

  14. Liu, Y.J.: Impulsive periodic type boundary value problems for multi-term singular fractional differential equations. Bull. Malays. Math. Sci. Soc. 37, 575–596 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Liu, X.P., Jia, M., Xiang, X.F.: On the solvability of a fractional differential equation model involving the \(p\)-Laplacian operator. Comput. Math. Appl. 64, 3267–3275 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jafari, H., Baleanu, D., Khan, H.: Existence criterion for the solutions of fractional order \(p\)-Laplacian boundary value problems. Bound. Value Probl. 2015, 164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, X.P., Jia, M., Ge, W.G.: The method of lower and upper solutions for mixed fractional four-point boundary value problem with \(p\)-Laplacian operator. Appl. Math. Lett. 65, 56–62 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Han, Z.L., Lu, H.L., Zhang, C.: Positive solutions for eigenvalue problems of fractional differential equation with generalized \(p\)-Laplacian. Appl. Math. Comput. 257, 526–536 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Liu, X.P., Jia, M., Ge, W.G.: Multiple solutions of a \(p\)-Laplacian model involving a fractional derivative. Adv. Differ. Equ. 2013, 126 (2013)

    Article  MathSciNet  Google Scholar 

  20. Tang, X.S., Yan, C.Y., Liu, Q.: Existence of solutions of two-point boundary value problems for fractional \(p\)-Laplace differential equations at resonance. J. Appl. Math. Comput. 41, 119–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Z.H., Lu, L.: A class of BVPs for nonlinear fractional differential equations with \(p\)-Laplacian operator. Electron. J. Qual. Theory Differ. Equ. 70, 1–16 (2012)

    MathSciNet  Google Scholar 

  22. Podlubny, I.: Geometrical and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 357–366 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Bai, Z.B., Ge, W.G.: Existence of three positive solutions for some second-order boundary value problems. Comput. Math. Appl. 48, 699–707 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bai, Z.B., Ge, W.G., Wang, Y.: Multiplicity results for some second-order four-point boundary-value problems. Nonlinear Anal. 60, 491–500 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Liu.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 11171220).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Jia, M. The Positive Solutions for Integral Boundary Value Problem of Fractional p-Laplacian Equation with Mixed Derivatives. Mediterr. J. Math. 14, 94 (2017). https://doi.org/10.1007/s00009-017-0895-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0895-9

Keywords

Mathematics Subject Classification

Navigation