Skip to main content
Log in

General Dynamics of Spinors

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper, we consider a general twisted-curved space-time hosting Dirac spinors and we take into account the Lorentz covariant polar decomposition of the Dirac spinor field: the corresponding decomposition of the Dirac spinor field equation leads to a set of field equations that are real and where spinorial components have disappeared while still maintaining Lorentz covariance. We will see that the Dirac spinor will contain two real scalar degrees of freedom, the module and the so-called Yvon–Takabayashi angle, and we will display their field equations. This will permit us to study the coupling of curvature and torsion respectively to the module and the YT angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abłamowicz, R., Gonçalves, I., Rocha, R.: Bilinear covariants and spinor fields duality in quantum Clifford algebras. J. Math. Phys. 55, 103501 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Campos, A.G., Cabrera, R., Rabitz, H.A., Bondar, D.I.: Analytic solutions to coherent control of the Dirac equation and beyond. arXiv:1705.02001 [quant-ph]

  3. Cavalcanti, R.T., Hoff da Silva, J.M., da Rocha, R.: VSR symmetries in the DKP algebra: the interplay between Dirac and Elko spinor fields. Eur. Phys. J. Plus 129, 246 (2014)

    Article  Google Scholar 

  4. Coronado Villalobos, C.H., Hoff da Silva, J.M., da Rocha, R.: Questing mass dimension 1 spinor fields. Eur. Phys. J. C 75, 266 (2015)

    Article  ADS  Google Scholar 

  5. Fabbri, L.: A generally-relativistic gauge classification of the Dirac fields. Int. J. Geom. Meth. Mod. Phys. 13, 1650078 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fabbri, L.: Torsion gravity for Dirac fields. Int. J. Geom. Methods Mod. Phys. 14, 1750037 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fabbri, L.: Torsion gravity for Dirac particles. Int. J. Geom. Methods Mod. Phys. 14, 1750127 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hestenes, D.: Real spinor fields. J. Math. Phys. 8, 798 (1967)

    Article  ADS  Google Scholar 

  9. Hestenes, D.: Local observables in the Dirac theory. J. Math. Phys. 14, 893 (1973)

    Article  ADS  Google Scholar 

  10. Hestenes, D.: Observables, operators and complex numbers in the Dirac theory. J. Math. Phys. 16, 556 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hestenes, D.: Quantum mechanics from self-interaction. Found. Phys. 15, 63 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hestenes, D.: The Zitterbewegung interpretation of quantum mechanics. Found. Phys. 20, 1213 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hiley, B.J., Callaghan, R.E.: The Clifford Algebra approach to quantum mechanics A: the Schroedinger and Pauli particles. arXiv:1011.4031 [math-ph]

  14. Hiley, B.J., Callaghan, R.E.: The Clifford algebra approach to quantum mechanics B: the Dirac particle and its relation to the Bohm approach. arXiv:1011.4033 [math-ph]

  15. Hiley, B.J., Callaghan, E.: Delayed-choice experiments and the Bohm approach. Phys Scr. 74, 336 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Hoff da Silva, J.M., da Rocha, R.: Unfolding physics from the algebraic classification of spinor fields. Phys. Lett. B 718, 1519 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Jakobi, G., Lochak, G.: Introduction des parametres relativistes de Cayley–Klein dans la representation hydrodynamique de l’equation de Dirac. Comptes Rendus Acad. Sci. 243, 234 (1956)

    Google Scholar 

  18. Krueger, H.: Classical limit of real Dirac theory: quantization of relativistic central field orbits. Found. Phys. 23, 1265 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  19. MacKenzie, R.B., Paranjape, M.B.: From Q walls to Q balls. JHEP 0108, 003 (2001)

    Article  ADS  MATH  Google Scholar 

  20. Moya, A.M., Rodrigues, W.A., Wainer, S.A.: The Dirac–Hestenes equation and its relation with the relativistic de Broglie–Bohm theory. Adv. Appl. Clifford Algebras 27, 2639 (2017). arXiv:1610.09655 [math-ph]

    Article  MathSciNet  Google Scholar 

  21. Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 57, 98 (1998)

    Article  ADS  MATH  Google Scholar 

  22. Rocha, R., Cavalcanti, T.: Flag-dipole and flagpole spinor fluid flows in Kerr spacetimes. Phys. Atom. Nucl. 80, 329 (2017)

    Article  ADS  Google Scholar 

  23. Rocha, R., Hoff da Silva, M.: ELKO, flagpole and flag-dipole spinor fields, and the instanton Hopf fibration. Adv. Appl. Clifford Algebras 20, 847 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rocha, R., Fabbri, L., Hoff da Silva, J.M., Cavalcanti, R.T., Silva-Neto, A.: Flag-dipole spinor fields in ESK gravities. J. Math. Phys. 54, 102505 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Rodrigues, W.A., Wainer, S.A.: The relativistic Hamilton–Jacobi equation for a massive, charged and spinning particle, its equivalent Dirac equation and the de Broglie–Bohm theory. Adv. Appl. Clifford Algebras 27, 1779 (2017). arXiv:1610.03310 [math-ph]

    Article  MATH  MathSciNet  Google Scholar 

  26. Rodrigues, W.A., Souza, Q.A.G., Vaz, J., Lounesto, P.: Dirac–Hestenes spinor fields in Riemann–Cartan space-time. Int. J. Theor. Phys. 35, 1849 (1996)

    Article  MATH  Google Scholar 

  27. Salesi, G., Recami, E.: About the kinematics of spinning particles. Adv. Appl. Clifford Algebras 7, S253 (1997)

    MATH  Google Scholar 

  28. Takahashi, K.: Soliton solutions of nonlinear Dirac equations. J. Math. Phys. 20, 1232 (1979)

    Article  ADS  MATH  Google Scholar 

  29. Vignolo, S., Fabbri, L., Cianci, R.: Dirac spinors in Bianchi-I f(R)-cosmology with torsion. J. Math. Phys. 52, 112502 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Welton, T.A.: Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev. 74, 1157 (1948)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fabbri.

Additional information

Communicated by Jayme Vaz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbri, L. General Dynamics of Spinors. Adv. Appl. Clifford Algebras 27, 2901–2920 (2017). https://doi.org/10.1007/s00006-017-0816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0816-9

Keywords

Navigation