Skip to main content
Log in

The Theory of Local Mass Dimension One Fermions of Spin One Half

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

About a decade ago the present author in collaboration with Daniel Grumiller presented an ‘unexpected theoretical discovery’ of spin one-half fermions with mass dimension one (Ahluwalia-Khalilova and Grumiller in Phys Rev D 72:067701 arXiv:hep-th/0410192, 2005, JCAP 0507:012, arXiv:hep-th/0412080, 2005). In the decade that followed a significant number of groups explored intriguing mathematical and physical properties of the new construct. However, the formalism suffered from two troubling features, that of non-locality and a subtle violation of Lorentz symmetry. Here, we trace the origin of both of these issues to a hidden freedom in the definition of duals of spinors and the associated field adjoints. In the process, for the first time, we provide a quantum theory of spin one-half fermions that is free from all the mentioned issues. The interactions of the new fermions are restricted to dimension-four quartic self interaction, and also to a dimension-four coupling with the Higgs. A generalised Yukawa coupling of the new fermions with neutrinos provides an hitherto unsuspected source of lepton-number violation. The new fermions thus present a first-principle dark matter partner to Dirac fermions of the standard model of high energy physics with contrasting mass dimensions—that of three halves for the latter versus one of the former without mutating the statistics from fermionic to bosonic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, B., Jain, P., Mitra, S., Nayak, A.C., Verma, R.K.: ELKO fermions as dark matter candidates. Phys. Rev. D 92, 075027 (2015). arXiv:1407.0797

    Article  ADS  Google Scholar 

  2. Ahluwalia, D.V., Nayak, A.C.: Elko and mass dimension one field of spin one half: causality and Fermi statistics. Int. J. Mod. Phys. D 23, 1430026 (2015). arXiv:1502.01940

  3. Ahluwalia, D.V.: Extended set of Majorana spinors, a new dispersion relation, and a preferred frame. arXiv:hep-ph/0305336 (unpublished)

  4. Ahluwalia, D.V.: Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation. Int. J. Mod. Phys. A 11, 1855–1874 (1996). arXiv:hep-th/9409134

    Article  ADS  Google Scholar 

  5. Ahluwalia, D.V., Lee, C.-Y., Schritt, D.: Elko as self-interacting fermionic dark matter with axis of locality. Phys. Lett. B 687, 248–252 (2010). arXiv:0804.1854

  6. Ahluwalia, D.V., Lee, C.-Y., Schritt, D.: Self-interacting Elko dark matter with an axis of locality. Phys. Rev. D 83, 065017 (2011). arXiv:0911.2947

    Article  ADS  Google Scholar 

  7. Ahluwalia, D.V., Horvath, S.P.: Very special relativity as relativity of dark matter: the Elko connection. JHEP 11, 078 (2010). arXiv:1008.0436

    Article  ADS  MATH  Google Scholar 

  8. Ahluwalia-Khalilova, D.V., Grumiller, D.: Dark matter: a spin one half fermion field with mass dimension one? Phys. Rev. D 72, 067701 (2005). arXiv:hep-th/0410192

  9. Ahluwalia-Khalilova, D.V., Grumiller, D.: Spin half fermions with mass dimension one: theory, phenomenology, and dark matter. JCAP 0507, 012 (2005). arXiv:hep-th/0412080

  10. Aitchison, I.J.R., Hey, A.J.G.: Gauge theories in particle physics: a practical introduction. Vol. 2: Non-Abelian gauge theories: QCD and the electroweak theory. Bristol, UK: IOP, p. 454 (2004)

  11. Alves, A., de Campos, F., Dias, M., Hoff da Silva, J.M.: Searching for Elko dark matter spinors at the CERN LHC. Int. J. Mod. Phys. A 30, 1550006 (2015). arXiv:1401.1127

  12. Alves, A., Dias, M., de Campos, F.: Perspectives for an Elko phenomenology using monojets at the 14 TeV LHC. Int. J. Mod. Phys. D 23, 1444005 (2014). arXiv:1410.3766

    Article  ADS  Google Scholar 

  13. Basak, A., Bhatt, J.R., Shankaranarayanan, S., Prasantha Varma, K.V.: Attractor behaviour in ELKO cosmology. JCAP 1304, 025 (2013). arXiv:1212.3445

  14. Basak, A., Bhatt, J.R.: Lorentz invariant dark-spinor and inflation. JCAP 1106, 011 (2011). arXiv:1104.4574

    Article  ADS  Google Scholar 

  15. Basak, A., Shankaranarayanan, S.: Super-inflation and generation of first order vector perturbations in ELKO. JCAP 1505, 034 (2015). arXiv:1410.5768

    Article  ADS  MathSciNet  Google Scholar 

  16. Bernardini, A.E., da Rocha, R.: Dynamical dispersion relation for ELKO dark spinor fields. Phys. Lett. B 717, 238–241 (2012). arXiv:1203.1049

    Article  ADS  Google Scholar 

  17. Bertone, G., Hooper, D.: A History of dark matter. Rev. Mod. Phys. (2016). arXiv:1605.04909

  18. Blumenthal, G.R., Faber, S.M., Primack, J.R., Rees, M.J.: Formation of galaxies and large scale structure with cold dark matter. Nature 311, 517–525 (1984)

    Article  ADS  Google Scholar 

  19. Boehmer, C.G.: The Einstein–Cartan–Elko system. Ann. Phys. 16, 38–44 (2007). arXiv:gr-qc/0607088

  20. Boehmer, C.G.: Dark spinor inflation: theory primer and dynamics. Phys. Rev. D 77, 123535 (2008). arXiv:0804.0616

    Article  ADS  Google Scholar 

  21. Boehmer, C.G., Burnett, J., Mota, D.F., Shaw, D.J.: Dark spinor models in gravitation and cosmology. JHEP 07, 053 (2010). arXiv:1003.3858

    Article  ADS  MATH  Google Scholar 

  22. Boehmer, C.G., Burnett, J.: Dark spinors with torsion in cosmology. Phys. Rev. D 78, 104001 (2008). arXiv:0809.0469

    Article  ADS  Google Scholar 

  23. Boehmer, C.G., Burnett, J.: Dark energy with dark spinors. Mod. Phys. Lett. A 25, 101–110 (2010). arXiv:0906.1351

    Article  ADS  MATH  Google Scholar 

  24. Boehmer, C.G., Mota, D.F.: CMB anisotropies and Inflation from non-standard spinors. Phys. Lett. B 663, 168–171 (2008). arXiv:0710.2003

    Article  ADS  Google Scholar 

  25. Bonora, L., da Rocha, R.: New spinor fields on Lorentzian 7-manifolds. JHEP 01, 133 (2016). arXiv:1508.01357

  26. Bueno Rogerio, R.J., Hoff da Silva, J.M., Pereira, S.H., da Rocha, R.: A framework to a mass dimension one fermionic sigma model. Europhys. Lett. 113(6), 60001 (2016). arXiv:1603.09183

  27. Cavalcanti, R.T., Hoff da Silva, J.M., da Rocha, R.: VSR symmetries in the DKP algebra: the interplay between Dirac and Elko spinor fields. Eur. Phys. J. Plus 129, 246 (2014). arXiv:1401.7527

  28. Chang, Y.-C., Bouhmadi-Lopez, M., Chen, P.: Phantom dark energy spinors in Einstein–Cartan gravity. arXiv:1507.07571

  29. Chaves, M., Singleton, D.: A unified model of phantom energy and dark matter. SIGMA 4, 009 (2008). arXiv:0801.4728

    MathSciNet  MATH  Google Scholar 

  30. Chee, G.: Stability of de Sitter solutions sourced by dark spinors. arXiv:1007.0554

  31. Cohen, A.G., Glashow, S.L.: Very special relativity. Phys. Rev. Lett. 97, 021601 (2006). arXiv:hep-ph/0601236

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. da Rocha, R., Bernardini, A.E., Hoff da Silva, J.M.: Exotic dark spinor fields. JHEP 04, 110 (2011). arXiv:1103.4759

  33. da Rocha, R., Fabbri, L., Hoff da Silva, J.M., Cavalcanti, R.T., Silva-Neto, J.A.: Flag–dipole spinor fields in ESK gravities. J. Math. Phys. 54, 102505 (2013). arXiv:1302.2262

  34. da Rocha, R., Hoff da Silva, J.M., Bernardini, A.E.: Elko spinor fields as a tool for probing exotic topological spacetime features. Int. J. Mod. Phys. Conf. Ser. 3, 133–142 (2011)

  35. da Rocha, R., Hoff da Silva, J.M.: ELKO, flagpole and flag-dipole spinor fields, and the instanton Hopf fibration. Adv. Appl. Clifford Algebras 20, 847–870 (2010). arXiv:0811.2717

  36. da Rocha, R., Hoff da Silva, J.M.: From Dirac spinor fields to ELKO. J. Math. Phys. 48, 123517 (2007). arXiv:0711.1103

  37. da Rocha, R., Hoff da Silva, J.M.: Hawking radiation from Elko particles tunnelling across black strings horizon. Europhys. Lett. 107, 50001 (2014). arXiv:1408.2402

  38. da Rocha, R., Rodrigues Jr., W.A.: Where are ELKO spinor fields in Lounesto spinor field classification? Mod. Phys. Lett. A 21, 65–74 (2006). arXiv:math-ph/0506075

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. da Rocha R., Pereira, J.G.: The quadratic spinor Lagrangian, axial torsion current, and generalizations. Int. J. Mod. Phys. D 16, 1653–1667 (2007). arXiv:gr-qc/0703076

  40. da Rocha, R., Cavalcanti, R.T.: Flag–dipole and flagpole spinors fluid flows in Kerr spacetimes. arXiv:1602.02441

  41. Darwin, C.G.: The electron as a vector wave. Nature 119, 282–284 (1927)

    Article  ADS  MATH  Google Scholar 

  42. Dasgupta, A.: Private communication

  43. Dias, M., de Campos, F., Hoff da Silva, J.M.: Exploring Elko typical signature. Phys. Lett. B 706, 352–359 (2012). arXiv:1012.4642

  44. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A117, 610–624 (1928)

    Article  ADS  MATH  Google Scholar 

  45. Dvoeglazov, V.V.: Lagrangian for the Majorana–Ahluwalia construct. Nuovo Cim. A 108, 1467–1476 (1995). arXiv:hep-th/9506083

    Article  ADS  Google Scholar 

  46. Dvoeglazov, V.V.: Neutral particles in light of the Majorana–Ahluwalia ideas. Int. J. Theor. Phys. 34, 2467–2490 (1995). arXiv:hep-th/9504158

    Article  MATH  Google Scholar 

  47. Dyson, F.J.: The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736–1755 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Englert, F., Brout, R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  49. Fabbri, L.: Causal propagation for ELKO fields. Mod. Phys. Lett. A 25, 151–157 (2010). arXiv:0911.2622. [Erratum: Mod. Phys. Lett.A25,1295(2010)]

  50. Fabbri, L.: The most general cosmological dynamics for ELKO matter Fields. Phys. Lett. B 704, 255–259 (2011). arXiv:1011.1637

    Article  ADS  Google Scholar 

  51. Fabbri, L.: Zero energy of plane-waves for ELKOs. Gen. Rel. Gravit 43, 1607–1613 (2011). arXiv:1008.0334

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Fabbri, L.: Conformal gravity with the most general ELKO matter. Phys. Rev. D 85, 047502 (2012). arXiv:1101.2566

    Article  ADS  Google Scholar 

  53. Fabbri, L., Vignolo, S.: The most general ELKO matter in torsional f(R)-theories. Ann. Phys. 524, 77–84 (2012). arXiv:1012.4282

    Article  MathSciNet  MATH  Google Scholar 

  54. Fabbri, L., Vignolo, S.: A modified theory of gravity with torsion and its applications to cosmology and particle physics. Int. J. Theor. Phys. 51, 3186–3207 (2012). arXiv:1201.5498

    Article  MathSciNet  MATH  Google Scholar 

  55. Fabbri, L., Vignolo, S.: ELKO and dirac spinors seen from torsion. Int. J. Mod. Phys. D 23, 1444001 (2014). arXiv:1407.8237

    Article  ADS  MATH  Google Scholar 

  56. Feynman, R.P.: The theory of positrons. Phys. Rev. 76, 749–759 (1949)

    Article  ADS  MATH  Google Scholar 

  57. Feynman, R.P., Weinberg, S.: Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures. Cambridge University Press, Cambridge (1999). (See Feynman in)

    Google Scholar 

  58. Gredat, D., Shankaranarayanan, S.: Modified scalar and tensor spectra in spinor driven inflation. JCAP 1001, 008 (2010). arXiv:0807.3336

    Article  ADS  Google Scholar 

  59. Guendelman, E.I., Kaganovich, A.B.: Exotic low density fermion states in the two measures field theory: neutrino dark energy. Int. J. Mod. Phys. A 21, 4373–4406 (2006). arXiv:gr-qc/0603070

  60. Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  ADS  Google Scholar 

  61. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  62. Hoff da Silva, J.M., da Rocha, R.: From dirac action to ELKO action. Int. J. Mod. Phys. A 24, 3227–3242 (2009). arXiv:0903.2815

  63. Hoff da Silva, J.M., da Rocha, R.: Unfolding physics from the algebraic classification of spinor fields. Phys. Lett. B 718, 1519–1523 (2013). arXiv:1212.2406

  64. Hoff da Silva, J.M., Pereira, S.H.: Exact solutions to Elko spinors in spatially flat Friedmann–Robertson–Walker spacetimes. JCAP 1403, 009 (2014). arXiv:1401.3252

  65. Hoff da Silva, J.M., Coronado Villalobos, C.H., da Rocha, R.: Black holes and exotic spinors. Universe 2(2), 8 (2016)

  66. Hoff da Silva, J.M., Villalobos, C.H.C., Rogerio, R.J.B., da Rocha, R.: On the spinor representation. arXiv:1702.05034

  67. Jardim, I.C., Alencar, G., Landim, R.R., Costa Filho, R.: Solutions to the problem of ELKO spinor localization in brane models. Phys. Rev. D 91, 085008 (2015). arXiv:1411.6962

    Article  ADS  MathSciNet  Google Scholar 

  68. Lancaster, T., Blundell, S.J.: Quantum Field Theory for the Gifted Amateur. Oxford University Press, Oxford (2014)

    Book  MATH  Google Scholar 

  69. Lazarides, G.: Particle physics approach to dark matter. Lect. Note Phys. 720, 3–34 (2007). arXiv:hep-ph/0601016

    Article  ADS  Google Scholar 

  70. Lee, C.-Y., Dias, M.: Constraints on mass dimension one fermionic dark matter from the Yukawa interaction. Phys. Rev. D 94(6), 065020 (2016). arXiv:1511.01160

  71. Lee, C.-Y.: Local quantum field theory and dark matter fields as representations of the Lorentz Group. PHYS480 Project (unpublished, University of Canterbury, Christchurch, New Zealand, supervised by D. V. Ahluwalia) (2007)

  72. Lee, C.-Y.: Symmetries and unitary interactions of mass dimension one fermionic dark matter. Int. J. Mod. Phys. A 31(35), 1650187 (2016). arXiv:1510.04983

  73. Lee, T.H.: Some cosmological solutions of 5D Einstein equations with dark spinor condensate. Phys. Lett. B 712, 6–9 (2012)

    Article  ADS  Google Scholar 

  74. Lee, C.-Y.: Self-interacting mass-dimension one fields for any spin. Int. J. Mod. Phys. A 30, 1550048 (2015). arXiv:1210.7916

    Article  ADS  MATH  Google Scholar 

  75. Lee, C.-Y.: A Lagrangian for mass dimension one fermionic dark matter. Phys. Lett. B 760, 164–169 (2016). arXiv:1404.5307

    Article  ADS  Google Scholar 

  76. Lee, T.D., Wick, G.C.: Space inversion, time reversal, and other discrete symmetries in local field theories. Phys. Rev. 148, 1385–1404 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  77. Liu, Y.-X., Zhou, X.-N., Yang, K., Chen, F.-W.: Localization of 5D Elko spinors on Minkowski branes. Phys. Rev. D 86, 064012 (2012). arXiv:1107.2506

  78. Lounesto, P.: Clifford algebras and spinors. Lond. Math. Soc. Lect. Note Ser. 286, 1–338 (2001)

    MathSciNet  MATH  Google Scholar 

  79. Majorana, E.: Theory of the symmetry of electrons and positrons. Nuovo Cim. 14, 171–184 (1937)

    Article  ADS  Google Scholar 

  80. Neto, J.A.S.: f(R) gravity with torsion and Lorentz violation. PhD thesis (2017). arXiv:1703.03682

  81. Pauli, W.: Zur Quantenmechanik des magnetischen Elektrons. Zeitschrift für Physik 43, 601–623 (1937)

    Article  ADS  MATH  Google Scholar 

  82. Penrose, R.: A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc 51, 406–413 (1955)

    Article  ADS  MATH  Google Scholar 

  83. Pereira, S.H., Lima, R.C.: Creation of Elko particles in asymptotically expanding universe. arXiv:1612.02240

  84. Pereira, S.H., Pinho, S.S., Hoff da Silva, J.M.: Some remarks on the attractor behaviour in ELKO cosmology. JCAP 1408, 020 (2014). arXiv:1402.6723

  85. Pereira, S.H., Pinho, A.S.S.: ELKO applications in cosmology. Int. J. Mod. Phys. D 23(14), 1444008 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Pinho, S.S., Pereira, S.H., Jesus, J.F.: A new approach on the stability analysis in ELKO cosmology. Eur. Phys. J. C 75, 36 (2015). arXiv:1407.3401

    Article  ADS  Google Scholar 

  87. Ramond, P.: Field Theory: A Modern Primer. Benjamin/Cummings Publishing Company, New York (1981)

    MATH  Google Scholar 

  88. Rogerio, R.J.B., da Silva, J.M.H.: The local vicinity of spins sum for certain mass dimension one spinors. arXiv:1602.05871

  89. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  90. Schwartz, M.D.: Quantum Field Theory and the Standard Model. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  91. Schwinger, J.: The theory of quantized fields. I. Phys. Rev. 82, 914–927 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Shankaranarayanan, S.: Dark spinor driven inflation. On recent developments in theoretical and experimental general relativity, astrophysics and relativistic field theories. In: Proceedings, 12th Marcel Grossmann Meeting on General Relativity, Paris, France, July 12–18, 2009. Vol. 1–3, pp. 1237–1240 (2010). arXiv:1002.1128

  93. Shankaranarayanan, S.: What-if inflaton is a spinor condensate? Int. J. Mod. Phys. D 18, 2173–2179 (2009). arXiv:0905.2573

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Sperança, L.D.: An identification of the Dirac operator with the parity operator. Int. J. Mod. Phys. D 23, 1444003 (2014). arXiv:1304.4794

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. ’t Hooft, G.: Dimensional regularization and the renormalization group. Nucl. Phys. B 61, 455–468 (1973)

    Article  ADS  Google Scholar 

  96. Tomonaga, S.: On a relativistically invariant formulation of the quantum theory of wave fields. Progr. Theor. Phys. 1, 27–42 (1946). (This is a translation of the original 1943 paper in Japanese)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Visser, M.: Lorentz invariance and the zero-point stress-energy tensor. arXiv:1610.07264

  98. Wei, H.: Spinor dark energy and cosmological coincidence problem. Phys. Lett. B 695, 307–311 (2011). arXiv:1002.4230

    Article  ADS  Google Scholar 

  99. Weinberg, S.: Feynman rules for any spin. Phys. Rev. 133, B1318–B1332 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Weinberg, S.: Feynman rules for any spin. II. Massless particles. Phys. Rev. 134, B882–B896 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  102. Weinberg, S.: The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  103. Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  104. Wigner, E.P.: Group theoretical concepts and methods in elementary particle physics physics. In: Gursey, F. (ed.) Lectures of the Istanbul Summer School of Theoretical Physics, 1962, (Gordon and Breach) (1964)

  105. Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939). [Reprint: Nucl. Phys. Proc. Suppl. 6, 9(1989)]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. Wunderle, K.E., Dick, R.: Transformation properties and symmetry behaviour of ELKO spinors. Can. J. Phys. 87, 909–916 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam Vir Ahluwalia.

Additional information

Communicated by Jayme Vaz

In memory of papaji, Shri Bikram Singh Ahluwalia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahluwalia, D.V. The Theory of Local Mass Dimension One Fermions of Spin One Half. Adv. Appl. Clifford Algebras 27, 2247–2285 (2017). https://doi.org/10.1007/s00006-017-0775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0775-1

Keywords

Navigation