Skip to main content
Log in

Existence of Stationary States for A-Dirac Equations with Variable Growth

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper, using a Hodge-type decomposition of variable exponent Lebesgue spaces of Clifford-valued functions and variational methods, we study the properties of weak solutions to the homogeneous and nonhomogeneous A-Dirac equations with variable growth in the setting of variable exponent Sobolev spaces of Clifford-valued functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ablamowicz (ed.), Clifford algebras and their applications in mathematical physics.Vol. 1: algebra andphysics, Birkhäuser, Boston, 2000.

  2. Carozza M., Passarelli A.: On very weak solutions of a class of nonlinear elliptic systems. Commment. Math. Univ. Carolin. 41, 493–508 (2000)

    MATH  Google Scholar 

  3. Z. Wang, S. Chen, The relation between A-Harmonic operator and A-Dirac system. Journal of Inequality and Applications 2013, DOI:10.1186/1029-242X-2013-362.

  4. Clifford W.K.: Preliminary sketch of bi-quaternions. Proc. London Math. Soc. 4, 381–395 (1873)

    MATH  MathSciNet  Google Scholar 

  5. Diening L., Kaplicky P., Schwarzacher S.: BMO estimates for the p-Laplacian. Nonlinear Analysis 75, 637–650 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents. Springe-Verlag, Berlin, 2011.

  7. L. Diening, P. Kaplicky, Campanato estimates for the generalized Stokes system. Annali di Matematica Pura ed Applicata, to appear.

  8. L. Diening, P. Kaplicky, L q theory for a generalized Stokes system. Manuscripta Mathematica 141 (2013), 333–361.

  9. L. Diening, D. Lengeler, M. Ružička, The Stokes and Poisson problem in variable exponent spaces. Complex Variables and Elliptic Equations 56 (2011), 789– 811.

  10. C. Doran, A. Lasenby, Geometric algebra for physicists. Cambridge University Press, Cambridge, 2003.

  11. J. Dubinskii, M. Reissig, Variational problems in Clifford analysis. Mathematical Methods in the Applied Sciences 25 (2002), 1161–1176.

  12. X. Fan, D. Zhao, On the spaces L p(x) and W m,p(x). Journal of Mathematical Analysis and Applications 263 (2001), 424–446.

  13. A. Fiorenza, C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right hand side in L 1. Studia Math. 127 (1998), 223–231.

  14. Fu Y.: Weak solution for obstacle problem with variable growth. Nonlinear Analysis 59, 371–383 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Fu, B. Zhang, Clifford valued weighted variable exponent spaces with an application to obstacle problems. Advances in Applied Clifford Algebras 23 (2013) 363–376.

  16. Fu Y., Zhang B.: Weak solutions for elliptic systems with variable growth in Clifford analysis. Czechoslovak Math. J. 63, 643–670 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Fu, V. Rădulescu, B. Zhang, Hodge decomposition of variable exponent spaces of Clifford-valued functions and applications to Dirac and Stokes equations. Preprint.

  18. Giachetti D., Schiachi R.: Boundary higher integrability for the gradient of distributional solutions of nonlinear systems. Studia Math. 123, 175–184 (1997)

    MATH  MathSciNet  Google Scholar 

  19. Gilbert J., Murray M. A. M.: Clifford algebra and Dirac oprators in harmonic analysis. Oxford University Press, Oxford (1993)

    Google Scholar 

  20. K. Gürlebeck, W. Sprößig, Quaternionic analysis and elliptic boundary value problems. Birkhäuser, Boston, 1990.

  21. K. Gürlebeck, W. Sprößig, Quaternionic and Clifford calculus for physicists and engineers. John Wiley & Sons, New York, 1997.

  22. K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic functions in the plane and n-dimensional space. Birkhäuser, Boston, 2008.

  23. L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator. Manuscripta Math. 92 (1997), 249–258.

  24. P. Harjulehto, P. Hästö, U. V. Lê, M. Nuortio, Overview of differential equations with non-standard growth. Nonlinear Analysis 72 (2010), 4551–4574.

  25. P. Harjulehto, P. Hästo, V. Latvala, Minimizers of the variable exponent, nonuniformly convex Dirichlet energy. J. Math. Pures Appl. 89 (2008), 174–197.

  26. Heisenberg W.: Doubts and hopes in quantum-electrodynamics. Physica 19, 897–908 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. T. Iwaniec, C. Sbordone, Weak minima of variational integrals. J. Reine Angew. Math. 454 (1994), 143–161.

  28. U. Kähler, On a direct decomposition in the space Lp(Ω). Zeitschrift für Analysis und ihre Anwendungen 4 (1999), 839–848.

  29. O. Kováčik, J. Rákosník, On spaces L p(x) and W m,p(x). Czechoslovak Math. J. 41 (1991), 592–618.

  30. J. L. Lions, Quelques méthodes de resolution des problèmes aux limites nonlinéaires. Dunod, Paris, 1969.

  31. Y. Lu, G. Bao, Stability of weak solutions to obstacle problem in Clifford analysis. Advances in Difference Equations, 2013 (2013), 1–11.

  32. C. A. Nolder, A-harmonic equations and the Dirac operator. Journal of Inequality and Applications 2010, Article ID 124018.

  33. Nolder C. A.: Nonlinear A-Dirac equations. Advances in Applied Clifford Algebras 21, 429–440 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nolder C. A., Ryan J.: p-Dirac operators. Advances in Applied Clifford Algebras 19, 391–402 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Ranada, J.M. Usón, Bound states of a classical charged nonlinear Dirac field in a Coulomb potential. J. Math. Phys. 22 (1981), 2533–2538.

  36. M. Ružička, Electrorheological fluids: modeling and mathematical theory. Springer-Verlag, Berlin, 2000.

  37. J. Ryan, W. Sprößig (eds.), Clifford algebras and their applications in mathematical physics. Vol. 2: Clifford analysis. Birkhäuser, Boston, 2000.

  38. Thaller B.: The Dirac equation. Springer, Berlin (2010)

    Google Scholar 

  39. Weyl H.: A remark on the coupling of gravitation and electron. Physical Rev. 77, 699–701 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  40. B. Zhang, Y. Fu, Weak solutions for A-Dirac equations with variable growth in Clifford analysis. Electronic Journal of Differential Equations 2012 (2012), 1–10.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu D. Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molica Bisci, G., Rădulescu, V.D. & Zhang, B. Existence of Stationary States for A-Dirac Equations with Variable Growth. Adv. Appl. Clifford Algebras 25, 385–402 (2015). https://doi.org/10.1007/s00006-014-0512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-014-0512-y

Keywords

Navigation