Skip to main content
Log in

In Vivo Cardioprotective Effects and Pharmacokinetic Profile of N-Propyl Caffeamide Against Ischemia Reperfusion Injury

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Caffeic acid derivatives constitute a class of potent anti-inflammatory and cardioprotective drug candidates. We recently synthesized a new caffeic acid derivative N-propyl caffeamide (PCA). Our pilot experiments demonstrated that PCA enhanced the survival of rat cardiomyocyte H9c2 cells against oxygen glucose deprivation and reoxygenation challenge in a concentration-dependent manner. Interestingly, PCA exhibited better cardioprotective potential than caffeic acid phenethyl ester and propyl caffeate. Thus, we hypothesized that PCA could protect heart against ischemia reperfusion (I/R) injury in mice. We first determined the stability and pharmacokinetic profile of PCA in male Sprague–Dawley rats by ultra-performance liquid chromatography coupled with UV and MS/MS detections. The stability of PCA in rat plasma was defined by the half-life of 31.39, 7.19 and 1.37 h in rat plasma at 25, 37 and 60 °C, respectively. To study the pharmacokinetic profiles, PCA was injected into male SD rats at the dose of 15 mg/kg via intravenous bolus administration. PCA showed the elimination half-life of approximate 235 min in rats. We subsequently evaluated the cardioprotective potential of PCA in mice model of myocardial infarction. Our results demonstrated that PCA effectively reduced infarct size and release of myocardial enzymes (e.g., CK, CK-MB and LDH). Biochemical analyses suggested that PCA increased the activities of antioxidant enzymes (e.g., CAT and SOD) while attenuated lipid peroxidation. Moreover, PCA profoundly reduced the number of apoptotic cells in infarcted myocardium. Consistently, PCA increased the expression level of anti-apoptotic protein Bcl2 whereas suppressed the expression of pro-apoptotic protein Bax in cardiac tissues. Collectively, PCA appears to be a novel bioavailable and stable pharmacological treatment for myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAR:

Area at risk

BOP:

Benzo-triazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate

BSA:

Bovine serum albumin

CAPE:

Caffeic acid phenethyl ester

CAT:

Catalase

CK:

Creatine kinase

CK-MB:

Myocardial muscle creatine kinase

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

ECL:

Enhanced chemiluminescence

ESI-MS:

Slectrospray ionization-mass spectrometry

GAPDH:

Glyceraldehydes-3-phosphate dehydrogenase

HRP:

Horseradish peroxidase

IgG:

Immunoglobulin G

LC/MS/MS:

Liquid chromatography/mass spectrometry/mass spectrometry

LAD:

Left anterior descending coronary artery

LDH:

Lactate dehydrogenase

MPO:

Myeloperoxidase

OGD:

Oxygen glucose deprivation

PCA:

N-Propyl caffeate amide

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

SOD:

Superoxide dismutase

TTC:

Triphenyltetrazolium chloride

References

  • Bonow RO, Smaha LA, Smith SC Jr et al (2002) World heart day 2002: the international burden of cardiovascular disease: responding to the emerging global epidemic. Circulation 106:1602–1605

    Article  PubMed  Google Scholar 

  • Borgeat P, Naccache PH (1990) Biosynthesis and biological activity of leukotriene B4. Clin Biochem 23:459–468

    Article  CAS  PubMed  Google Scholar 

  • Buja LM, Vela D, Silva GV et al (2007) Pathological assessment of stem cell therapy for myocardial ischernic disease. J Mol Cell Cardiol 42:S95

    Article  Google Scholar 

  • Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng YY, Xia ZY, Han YF et al (2016) Plant natural product formononetin protects rat cardiomyocyte H9c2 cells against oxygen glucose deprivation and reoxygenation via inhibiting ROS formation and promoting GSK-3β phosphorylation. Oxid Med Cell Longev 2016:2060874

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook SA, Sugden PH, Clerk A (1999) Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 85:940–949

    Article  CAS  PubMed  Google Scholar 

  • da Cunha FM, Duma D, Assreuy J et al (2004) Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic Res 38:1241–1253

    Article  PubMed  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  PubMed  Google Scholar 

  • Dong JW, Zhu HF, Zhu WZ et al (2003) Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res 13:385–391

    Article  CAS  PubMed  Google Scholar 

  • Fiuza SM, Gomes C, Teixeira LJ et al (2004) Phenolic acid derivatives with potential anticancer properties—a structure-activity relationship study. Part 1: methyl, propyl and octyl esters of caffeic and gallic acids. Bioorg Med Chem 12:3581–3589

    Article  CAS  PubMed  Google Scholar 

  • Goldmann BU, Rudolph V, Rudolph TK et al (2009) Neutrophil activation precedes myocardial injury in patients with acute myocardial infarction. Free Radic Biol Med 47:79–83

    Article  CAS  PubMed  Google Scholar 

  • Hakonarson H, Thorvaldsson S, Helgadottir A et al (2005) Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA 293:2245–2256

    Article  CAS  PubMed  Google Scholar 

  • Helgadottir A, Manolescu A, Helgason A et al (2006) A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet 38:68–74

    Article  CAS  PubMed  Google Scholar 

  • Ho YJ, Lee AS, Chen WP et al (2014) Caffeic acid phenethyl amide ameliorates ischemia/reperfusion injury and cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 13:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Hori M, Nishida K (2009) Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 81:457–464

    Article  CAS  PubMed  Google Scholar 

  • Jolly SR, Kane WJ, Hook BG et al (1986) Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J 112:682–690

    Article  CAS  PubMed  Google Scholar 

  • Jordan JE, Zhao ZQ, Vinten-Johansen J (1999) The role of neutrophils in myocardial ischemia–reperfusion injury. Cardiovasc Res 43:860–878

    Article  CAS  PubMed  Google Scholar 

  • Kart A, Cigremis Y, Ozen H et al (2009) Caffeic acid phenethyl ester prevents ovary ischemia/reperfusion injury in rabbits. Food Chem Toxicol 47:1980–1984

    Article  CAS  PubMed  Google Scholar 

  • Koltuksuz U, Ozen S, Uz E et al (1999) Caffeic acid phenethyl ester prevents intestinal reperfusion injury in rats. J Pediatr Surg 34:1458–1462

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142:288–297

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Ku HC, Kuo YH et al (2015) Pyrrolidinyl caffeamide against ischemia/reperfusion injury in cardiomyocytes through AMPK/AKT pathways. J Biomed Sci 22:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Litt MR, Jeremy RW, Weisman HF et al (1989) Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80:1816–1827

    Article  CAS  PubMed  Google Scholar 

  • Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445

    Article  PubMed  PubMed Central  Google Scholar 

  • Natarajan K, Singh S, Burke TR Jr et al (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93:9090–9095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan P, Vedernikova I, Cos P et al (2001) Synthesis and evaluation of caffeic acid amides as antioxidants. Bioorg Med Chem Lett 11:215–217

    Article  CAS  PubMed  Google Scholar 

  • Rashid K, Sinha K, Sil PC (2013) An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 62:584–600

    Article  CAS  PubMed  Google Scholar 

  • Schofield ZV, Woodruff TM, Halai R et al (2013) Neutrophils—a key component of ischemia–reperfusion injury. Shock 40:463–470

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Bowman PD, Kerwin SM et al (2007) Stability of caffeic acid phenethyl ester and its fluorinated derivative in rat plasma. Biomed Chromatogr 21:343–350

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Zhao LM, Ma ZZ et al (2004) Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury. Brain 127(Pt 12):2629–2635

    Article  PubMed  Google Scholar 

  • Werz O, Steinhilber D (2006) Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther 112:701–718

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Alloush J, Beck E et al (2014) A murine model of myocardial ischemia–reperfusion injury through ligation of the left anterior descending artery. J Vis Exp. doi:10.3791/51329

    Google Scholar 

  • Yang J, Kerwin SM, Bowman PD et al (2012) Stability of caffeic acid phenethyl amide (CAPA) in rat plasma. Biomed Chromatogr 26:594–598

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Bowman PD, Kerwin SM et al (2014) Development and validation of an LCMS method to determine the pharmacokinetic profiles of caffeic acid phenethyl amide and caffeic acid phenethyl ester in male Sprague–Dawley rats. Biomed Chromatogr 28:241–246

    Article  CAS  PubMed  Google Scholar 

  • Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  PubMed  Google Scholar 

  • Yokomizo T, Izumi T, Shimizu T (2001) Leukotriene B4: metabolism and signal transduction. Arch Biochem Biophys 385:231–241

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Erzinger MM, Pietsch KE et al (2012) Up-regulation of human prostaglandin reductase 1 improves the efficacy of hydroxymethylacylfulvene, an antitumor chemotherapeutic agent. J Pharmacol Exp Ther 343:426–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Chi-Wai Cheung for offering the access to small animal ventilator and Mr. Hao-Bo Li for his excellent technical assistance on mouse model of myocardial infarction. This work was supported by General Research Fund (i.e., HKU 775812M and 17120915) from the Research Grants Council of Hong Kong and the Seed Fund for Basic Research Programme, the University of Hong Kong (to J.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Rong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest about the article.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YY., Luo, D., Xia, Z. et al. In Vivo Cardioprotective Effects and Pharmacokinetic Profile of N-Propyl Caffeamide Against Ischemia Reperfusion Injury. Arch. Immunol. Ther. Exp. 65, 145–156 (2017). https://doi.org/10.1007/s00005-016-0413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-016-0413-y

Keywords

Navigation