Skip to main content

Advertisement

Log in

The Anti-Tumor Activity of E1A and its Implications in Cancer Therapy

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The adenovirus type 5 E1A protein (E1A) plays a critical role in anti-cancer gene therapy and has been tested in clinical trials. The expression of E1A significantly reduces tumorigenesis, promotes cell death, and inhibits cancer cell mobility. Chemosensitization is one of the anti-tumor effects of E1A, increasing in vitro and in vivo sensitization of anti-cancer drugs, including cisplatin, gemcitabine, etoposide, doxorubicin, paclitaxel, and tumor necrosis factor-related apoptosis-inducing ligand and histone deacetylase inhibitors in different types of cancer cells. E1A also demonstrates anti-metastasis activity through various molecular mechanisms such as the repression of protease expression, suppression of HER2/neu and downregulation of microRNA (miR-520h). Moreover, E1A has been reported to reprogram transcription in tumor cells and stabilize tumor suppressors such as PP2A/C, p21 and p53. Because E1A plays a potentially significant role in anti-tumor therapy, there exists an urgent need to study the anti-cancer activities of E1A. This paper presents a review of our current understanding of the tumor-suppressive functions and molecular regulation of E1A, as well as the potential clinical applications of E1A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abal M, Andreu JM, Barasoain I (2003) Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets 3:193–203

    Article  CAS  PubMed  Google Scholar 

  • Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426

    Article  CAS  PubMed  Google Scholar 

  • Adams JM, Kelly PN, Dakic A et al (2008) Role of “cancer stem cells” and cell survival in tumor development and maintenance. Cold Spring Harb Symp Quant Biol 73:451–459

    Article  CAS  PubMed  Google Scholar 

  • Alison MR, Lin WR, Lim SM et al (2012) Cancer stem cells: in the line of fire. Cancer Treat Rev 38:589–598

    Article  CAS  PubMed  Google Scholar 

  • Amos KD, Adamo B, Anders CK (2012) Triple-negative breast cancer: an update on neoadjuvant clinical trials. Int J Breast Cancer 2012:385978

    Article  PubMed Central  PubMed  Google Scholar 

  • Azijli K, Weyhenmeyer B, Peters GJ et al (2013) Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ 20:858–868

    Article  CAS  PubMed  Google Scholar 

  • Bartholomeusz C, Itamochi H, Nitta M et al (2006) Antitumor effect of E1A in ovarian cancer by cytoplasmic sequestration of activated ERK by PEA15. Oncogene 25:79–90

    CAS  PubMed  Google Scholar 

  • Bauerschmitz GJ, Ranki T, Kangasniemi L et al (2008) Tissue-specific promoters active in CD44+CD24-/low breast cancer cells. Cancer Res 68:5533–5539

    Article  CAS  PubMed  Google Scholar 

  • Birts CN, Harding R, Soosaipillai G et al (2010) Expression of CtBP family protein isoforms in breast cancer and their role in chemoresistance. Biol Cell 103:1–19

    Article  PubMed Central  PubMed  Google Scholar 

  • Bishop JF, Macarounas-Kirchman K (1997) The pharmacoeconomics of cancer therapies. Semin Oncol 24 (6 Suppl 19):S19–106–S119–111

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon LY, Zhu H, Chu A et al (1997) Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J Biol Chem 272:27913–27918

    Article  CAS  PubMed  Google Scholar 

  • Brader KR, Wolf JK, Hung MC et al (1997) Adenovirus E1A expression enhances the sensitivity of an ovarian cancer cell line to multiple cytotoxic agents through an apoptotic mechanism. Clin Cancer Res 3:2017–2024

    CAS  PubMed  Google Scholar 

  • Cano A, Nieto MA (2008) Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol 18:357–359

    Article  CAS  PubMed  Google Scholar 

  • Chang CY, Lin YM, Lee WP et al (2006) Involvement of Bcl-X(L) deamidation in E1A-mediated cisplatin sensitization of ovarian cancer cells. Oncogene 25:2656–2665

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Hung MC (1997) Involvement of co-activator p300 in the transcriptional regulation of the HER-2/neu gene. J Biol Chem 272:6101–6104

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Yu D, Chinnadurai G et al (1997) Mapping of adenovirus 5 E1A domains responsible for suppression of neu-mediated transformation via transcriptional repression of neu. Oncogene 14:1965–1971

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Lan K, Hung MC (2003) Strategies to target HER2/neu overexpression for cancer therapy. Drug Resist Updates 6:129–136

    Article  CAS  Google Scholar 

  • Chinnadurai G (2009) The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69:731–734

    Article  CAS  PubMed  Google Scholar 

  • Chinnadurai G (2011) Opposing oncogenic activities of small DNA tumor virus transforming proteins. Trends Microbiol 19:174–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chinnaiyan AM, Prasad U, Shankar S et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97:1754–1759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeCaprio JA (2009) How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 384:274–284

    Article  CAS  PubMed  Google Scholar 

  • Delmastro DA, Li J, Vaisman A et al (1997) DNA damage inducible-gene expression following platinum treatment in human ovarian carcinoma cell lines. Cancer Chemother Pharmacol 39:245–253

    CAS  PubMed  Google Scholar 

  • Deng J, Kloosterbooer F, Xia W et al (2002) The NH(2)-terminal and conserved region 2 domains of adenovirus E1A mediate two distinct mechanisms of tumor suppression. Cancer Res 62:346–350

    CAS  PubMed  Google Scholar 

  • Ellis L, Pili R (2010) Histone deacetylase inhibitors: advancing therapeutic strategies in hematological and solid malignancies. Pharmaceuticals 3:2411–2469

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferrari R, Pellegrini M, Horwitz GA et al (2008) Epigenetic reprogramming by adenovirus e1a. Science 321:1086–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fleming DR, Glisson SD, Bhupalam L et al (2000) Phase I study of paclitaxel and day 1/day 8 gemcitabine in patients with solid malignancies. Am J Clin Oncol 23:349–352

    Article  CAS  PubMed  Google Scholar 

  • Flint J, Shenk T (1989) Adenovirus E1A protein paradigm viral transactivator. Annu Rev Genet 23:141–161

    Article  CAS  PubMed  Google Scholar 

  • French LE, Tschopp J (1999) The TRAIL to selective tumor death. Nat Med 5:146–147

    Article  CAS  PubMed  Google Scholar 

  • Frisch SM (1991) Antioncogenic effect of adenovirus E1A in human tumor cells. Proc Natl Acad Sci USA 88:9077–9081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frisch SM (1994) E1a induces the expression of epithelial characteristics. J Cell Biol 127:1085–1096

    Article  CAS  PubMed  Google Scholar 

  • Frisch SM, Mymryk JS (2002) Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 3:441–452

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Senovilla L, Vitale I et al (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883

    Article  CAS  PubMed  Google Scholar 

  • Gerdes J, Schwab U, Lemke H et al (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31:13–20

    Article  CAS  PubMed  Google Scholar 

  • Gibbons DL, Lin W, Creighton CJ et al (2009) Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23:2140–2151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gliniak B, Le T (1999) Tumor necrosis factor-related apoptosis-inducing ligand’s antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 59:6153–6158

    CAS  PubMed  Google Scholar 

  • Grooteclaes ML, Frisch SM (2000) Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19:3823–3828

    Article  CAS  PubMed  Google Scholar 

  • Grooteclaes M, Deveraux Q, Hildebrand J et al (2003) C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci USA 100:4568–4573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guinea Viniegra J, Hernandez Losa J, Sanchez-Arevalo VJ et al (2002) Modulation of PI3K/Akt pathway by E1a mediates sensitivity to cisplatin. Oncogene 21:7131–7136

    Article  PubMed  Google Scholar 

  • Heinemann V (2002) Present and future treatment of pancreatic cancer. Semin Oncol 29(3 Suppl 9):23–31

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi GN, Ueno NT, Xia W et al (2001) Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 19:3422–3433

    CAS  PubMed  Google Scholar 

  • Hu MC, Lee DF, Xia W et al (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117:225–237

    Article  CAS  PubMed  Google Scholar 

  • Ingemarsdotter CK, Baird SK, Connell CM et al (2010) Low-dose paclitaxel synergizes with oncolytic adenoviruses via mitotic slippage and apoptosis in ovarian cancer. Oncogene 29:6051–6063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Itamochi H, Kigawa J, Kanamori Y et al (2007) Adenovirus type 5 E1A gene therapy for ovarian clear cell carcinoma: a potential treatment strategy. Mol Cancer Ther 6:227–235

    Article  CAS  PubMed  Google Scholar 

  • Kagawa S, He C, Gu J et al (2001) Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 61:3330–3338

    CAS  PubMed  Google Scholar 

  • Ko M, Sohn DH, Chung H et al (2008) Chromatin remodeling, development and disease. Mutat Res 647:59–67

    Article  CAS  PubMed  Google Scholar 

  • Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468

    Article  CAS  PubMed  Google Scholar 

  • Lee WP, Wen Y, Varnum B et al (2002) Akt is required for Axl-Gas6 signaling to protect cells from E1A-mediated apoptosis. Oncogene 21:329–336

    Article  CAS  PubMed  Google Scholar 

  • Lee WP, Tai DI, Tsai SL et al (2003) Adenovirus type 5 E1A sensitizes hepatocellular carcinoma cells to gemcitabine. Cancer Res 63:6229–6236

    CAS  PubMed  Google Scholar 

  • Li Y, Yu DC, Chen Y et al (2001) A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res 61:6428–6436

    CAS  PubMed  Google Scholar 

  • Li Z, Day CP, Yang JY et al (2004) Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53. Cancer Res 64:9080–9085

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Hung MC (2003) Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis. Mol Cell Biol 23:6836–6848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao Y, Hung MC (2004) A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer drug-induced apoptosis in human breast cancer cells. Cancer Res 64:5938–5942

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Zou YY, Xia WY et al (2004) Enhanced paclitaxel cytotoxicity and prolonged animal survival rate by a nonviral-mediated systemic delivery of E1A gene in orthotopic xenograft human breast cancer. Cancer Gene Ther 11:594–602

    Article  CAS  PubMed  Google Scholar 

  • Linger RM, Keating AK, Earp HS et al (2008) TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 100:35–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma X, Ezzeldin HH, Diasio RB (2009) Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69:1911–1934

    Article  CAS  PubMed  Google Scholar 

  • Madhusudan S, Tamir A, Bates N et al (2004) A multicenter Phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res 10:2986–2996

    Article  CAS  PubMed  Google Scholar 

  • Najafi SM, Li Z, Makino K et al (2003) The adenoviral E1A induces p21WAF1/CIP1 expression in cancer cells. Biochem Biophys Res Commun 305:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166

    Article  CAS  PubMed  Google Scholar 

  • Norris KL, Lee JY, Yao TP (2009) Acetylation goes global: the emergence of acetylation biology. Sci Signal 2:pe76

    Article  PubMed Central  PubMed  Google Scholar 

  • Paccez JD, Vasques GJ, Correa RG et al (2013) The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene 32:689–698

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Gaur AB, Lengyel E et al (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pelka P, Ablack JN, Fonseca GJ et al (2008) Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J Virol 82:7252–7263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinilla-Dominguez P, Richardson J, Robertson J et al (2013) NICE guidance on bevacizumab in combination with gemcitabine and carboplatin for treating the first recurrence of platinum-sensitive advanced ovarian cancer. Lancet Oncol 14:691–692

    Article  CAS  PubMed  Google Scholar 

  • Porzner M, Seufferlein T (2011) Novel approaches to target pancreatic cancer. Curr Cancer Drug Targets 11:698–713

    Article  PubMed  Google Scholar 

  • Rankin EB, Fuh KC et al (2010) AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res 70:7570–7579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samuelson AV, Lowe SW (1997) Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc Natl Acad Sci USA 94:12094–12099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sang N, Caro J, Giordano A (2002) Adenoviral E1A: everlasting tool, versatile applications, continuous contributions and new hypotheses. Front Biosci 7:d407–d413

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Tsai EM, Wei K et al (2001) E1A inhibition of radiation-induced NF-kappaB activity through suppression of IKK activity and IkappaB degradation, independent of Akt activation. Cancer Res 61:7413–7416

    CAS  PubMed  Google Scholar 

  • Shao R, Lee DF, Wen Y et al (2005) E1A sensitizes cancer cells to TRAIL-induced apoptosis through enhancement of caspase activation. Mol Cancer Res 3:219–226

    CAS  PubMed  Google Scholar 

  • Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  CAS  PubMed  Google Scholar 

  • Silvestris N, D’Aprile M, Andreola G et al (2004) Rationale for the use of gemcitabine in breast cancer (Review). Int J Oncol 24:389–398

    CAS  PubMed  Google Scholar 

  • Su JL, Chen PB, Chen YH et al (2010) Downregulation of microRNA miR-520h by E1A contributes to anticancer activity. Cancer Res 70:5096–5108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su JL, Cheng X, Yamaguchi H et al (2011) FOXO3a-dependent mechanism of E1A-induced chemosensitization. Cancer Res 71:6878–6887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sunters A, Fernandez de Mattos S et al (2003) FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278:49795–49805

    Article  CAS  PubMed  Google Scholar 

  • Teodoro JG, Shore GC, Branton PE (1995) Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms. Oncogene 11:467–474

    CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  • Ueno NT, Bartholomeusz C, Herrmann JL et al (2000) E1A-mediated paclitaxel sensitization in HER-2/neu-overexpressing ovarian cancer SKOV3.ip1 through apoptosis involving the caspase-3 pathway. Clin Cancer Res 6:250–259

    CAS  PubMed  Google Scholar 

  • Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66:773–787

    Article  CAS  PubMed  Google Scholar 

  • Villaret D, Glisson B, Kenady D et al (2002) A multicenter phase II study of tgDCC-E1A for the intratumoral treatment of patients with recurrent head and neck squamous cell carcinoma. Head Neck 24:661–669

    Article  PubMed  Google Scholar 

  • Westeel V, Breton JL, Braun D et al (2006) Long-duration, weekly treatment with gemcitabine plus vinorelbine for non-small cell lung cancer: a multicenter phase II study. Lung Cancer 51:347–355

    Article  CAS  PubMed  Google Scholar 

  • Xing X, Liu V, Xia W et al (1997) Safety studies of the intraperitoneal injection of E1A–liposome complex in mice. Gene Ther 4:238–243

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Chen CT, Chou CK et al (2010) Adenovirus 5 E1A enhances histone deacetylase inhibitors-induced apoptosis through Egr-1-mediated Bim upregulation. Oncogene 29:5619–5629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamasaki Y, Tazawa H, Hashimoto Y et al (2012) A novel apoptotic mechanism of genetically engineered adenovirus-mediated tumour-specific p53 overexpression through E1A-dependent p21 and MDM2 suppression. Eur J Cancer 48:2282–2291

    Article  CAS  PubMed  Google Scholar 

  • Yoo GH, Hung MC, Lopez-Berestein G et al (2001) Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res 7:1237–1245

    CAS  PubMed  Google Scholar 

  • Yu D, Hung MC (1998) The erbB2 gene as a cancer therapeutic target and the tumor- and metastasis-suppressing function of E1A. Cancer Metastasis Rev 17:195–202

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Jia SF, Hung MC et al (2001) E1A sensitizes HER2/neu-overexpressing Ewing’s sarcoma cells to topoisomerase II-targeting anticancer drugs. Cancer Res 61:3394–3398

    CAS  PubMed  Google Scholar 

  • Zhou Z, Guan H, Kleinerman ES (2005) E1A specifically enhances sensitivity to topoisomerase II alpha targeting anticancer drug by up-regulating the promoter activity. Mol Cancer Res 3:271–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council grant from Taiwan (NSC 102-2314-B-039-200, NSC 102-2314-B-038-028-MY3, NSC 101-2320-B-400-016-MY3); National Health Research Institutes grant from Taiwan (CA-102-PP-41); Ministry of Health and Welfare, Taiwan (DOH 102-TD-C-111-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Liang Su.

About this article

Cite this article

Chang, YW., Hung, MC. & Su, JL. The Anti-Tumor Activity of E1A and its Implications in Cancer Therapy. Arch. Immunol. Ther. Exp. 62, 195–204 (2014). https://doi.org/10.1007/s00005-014-0273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-014-0273-2

Keywords

Navigation