Skip to main content

Advertisement

Log in

Putative Biological Mechanisms of Efficiency of Substrate Reduction Therapies for Mucopolysaccharidoses

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Mucopolysaccharidoses (MPS) are inherited metabolic diseases caused by mutations in genes coding for lysosomal enzymes involved in the degradation of glycosaminoglycans (GAGs). Dysfunction of any of these enzymes results in the accumulation of GAGs, which leads to severe clinical symptoms and significantly shortened life span. Several kinds of therapies have been proposed to treat MPS, including bone marrow or stem cell transplantation, enzyme replacement therapy, and gene therapy. Another option is substrate reduction therapy (SRT), in which synthesis of GAGs is inhibited. Recent studies employing in vitro and animal models suggested that this therapy may be efficient in decreasing levels of GAGs in MPS cells, including those bearing two null alleles of the affected gene. Results of behavioral tests in animals as well as some preliminary clinical observations with pediatric patients corroborated the suggestions about possible efficacy of SRT in MPS treatment, including brain functions. Efficient reduction of GAG levels in MPS cells homozygous for null mutations may be intriguing in the commonly accepted scheme of SRT mode of action. In this paper, we propose an explanation of this phenomenon, based on already known facts. Thus, we suggest that SRT may lead to reduction of GAG levels in MPS cells due to inhibition of efficiency of GAG synthesis combined with (a) any readthrough of the stop codon, (b) dilution of already accumulated GAGs due to cell growth followed by cell divisions, and (c) action of endoglycosidases degrading GAGs, e.g., heparanase, in combination with functional GAG-specific hydrolases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anson DS, McIntyre C, Byers S (2011) Therapies for neurological disease in the mucopolysaccharidoses. Curr Gene Ther 11:132–143

    Article  PubMed  CAS  Google Scholar 

  • Arfi A, Richard M, Gandolphe C, Scherman D (2010) Storage correction in cells of patients suffering from mucopolysaccharidoses types IIIA and VII after treatment with genistein and other isoflavones. J Inherit Metab Dis 33:61–67

    Article  PubMed  CAS  Google Scholar 

  • Beck M (2010) Therapy for lysosomal storage disorders. IUBMB Life 62:33–40

    PubMed  CAS  Google Scholar 

  • Benson PF, Dean MF, Muir H (1972) A form of mucopolysaccharidosis with visceral storage and excessive urinary excretion of chondroitin sulphate. Dev Med Child Neurol 14:69–74

    Article  PubMed  CAS  Google Scholar 

  • Cain H, Egner E, Kresse H (1977) Mucopolysaccharidosis III A (Sanfilippo disease type A). Histochemical, electron microscopical and biochemical findings. Beitr Pathol 160:58–72

    PubMed  CAS  Google Scholar 

  • Clarke LA (2008) Idursulfase for the treatment of mucopolysaccharidosis II. Expert Opin Pharmacother 9:311–317

    Article  PubMed  CAS  Google Scholar 

  • Cotrim AP, Baum BJ (2008) Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol 36:97–103

    Article  PubMed  CAS  Google Scholar 

  • de Ru MH, Boelens JJ, Das AM, Jones SA, van der Lee JH, Mahlaoui N, Mengel E, Offringa M, O’Meara A, Parini R, Rovelli A, Sykora KW, Valayannopoulos V, Vellodi A, Wynn RF, Wijburg FA (2011) Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J Rare Dis 6:55

    Article  PubMed  Google Scholar 

  • de Ruijter JVM, Valstar MJ, Narajczyk M, Wegrzyn G, Kulik W, Ijlst L, Wagemans T, van der Wal WM, Wijburg FA (2012) Genistein in Sanfilippo disease: a randomized controlled cross-over trial. Ann Neurol 71:110–120

    Article  PubMed  Google Scholar 

  • Delgadillo V, O’Callaghan Mdel M, Artuch R, Montero R, Pineda M (2011) Genistein supplementation in patients affected by Sanfilippo disease. J Inherit Metab Dis 34:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Dorfman A (1964) Metabolism of acid mucopolysaccharides. Biophys J 4(Suppl 1):155–165

    Article  PubMed  CAS  Google Scholar 

  • Dziedzic D, Wegrzyn G, Jakobkiewicz-Banecka J (2010) Impairment of glycosaminoglycan synthesis in mucopolysaccharidosis type IIIA cells by using siRNA: a potential therapeutic approach for Sanfilippo disease. Eur J Hum Genet 18:200–205

    Article  PubMed  CAS  Google Scholar 

  • Elstein D, Hollak C, Aerts JM, van Weely S, Maas M, Cox TM, Lachmann RH, Hrebicek M, Platt FM, Butters TD, Dwek RA, Zimran A (2004) Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J Inherit Metab Dis 27:757–766

    Article  PubMed  CAS  Google Scholar 

  • Friso A, Tomanin R, Salvalaio M, Scarpa M (2010) Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II. Br J Pharmacol 159:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519

    Article  PubMed  CAS  Google Scholar 

  • Jakobkiewicz-Banecka J, Wegrzyn A, Wegrzyn G (2007) Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases. J Appl Genet 48:383–388

    Article  PubMed  Google Scholar 

  • Jakobkiewicz-Banecka J, Piotrowska E, Narajczyk M, Baranska S, Wegrzyn G (2009) Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. J Biomed Sci 16:26

    Article  PubMed  Google Scholar 

  • Jakobkiewicz-Banecka J, Piotrowska E, Gabig-Ciminska M et al (2011) Substrate reduction therapies for mucopolysaccharidoses. Curr Pharm Biotechnol 12:1860–1865

    Article  PubMed  CAS  Google Scholar 

  • Kaidonis X, Liaw WC, Roberts AD, Ly M, Anson D, Byers S (2010) Gene silencing of EXTL2 and EXTL3 as a substrate deprivation therapy for heparan sulphate storing mucopolysaccharidoses. Eur J Hum Genet 18:194–199

    Article  PubMed  CAS  Google Scholar 

  • Kloska A, Bohdanowicz J, Konopa G et al (2005) Changes in hair morphology of mucopolysaccharidosis I patients treated with recombinant human alpha-l-iduronidase (laronidase, Aldurazyme). Am J Med Genet A 139:199–203

    PubMed  Google Scholar 

  • Kloska A, Jakobkiewicz-Banecka J, Narajczyk M, Banecka-Majkutewicz Z, Wegrzyn G (2011) Effects of flavonoids on glycosaminoglycan synthesis: implications for substrate reduction therapy in Sanfilippo disease and other mucopolysaccharidoses. Metab Brain Dis 26:1–8

    Article  PubMed  CAS  Google Scholar 

  • Lau AA, Hannouche H, Rozaklis T, Hassiotis S, Hopwood JJ, Hemsley KM (2010) Allogeneic stem cell transplantation does not improve neurological deficits in mucopolysaccharidosis type IIIA mice. Exp Neurol 225:445–454

    Article  PubMed  CAS  Google Scholar 

  • Machaczka M, Hast R, Dahlman I, Lerner R, Klimkowska M, Engvall M, Hägglund H (2012) Substrate reduction therapy with miglustat for type 1 Gaucher disease: a retrospective analysis from a single institution. Ups J Med Sci 117:28–34

    Article  PubMed  Google Scholar 

  • Malinova V, Węgrzyn G, Narajczyk M (2012) The use of elevated doses of genistein-rich soy extract in the gene expression-targeted isoflavone therapy (GET IT) for Sanfilippo disease patients. JIMD Rep 5:21–25

    Article  Google Scholar 

  • Malinowska M, Jakobkiewicz-Banecka J, Kloska A et al (2008) Abnormalities in the hair morphology of patients with some but not all types of mucopolysaccharidoses. Eur J Pediatr 167:203–209

    Article  PubMed  CAS  Google Scholar 

  • Malinowska M, Wilkinson FL, Bennett W et al (2009) Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Mol Genet Metab 98:235–242

    Article  PubMed  CAS  Google Scholar 

  • Malinowska M, Wilkinson FL, Langford-Smith KJ et al (2010) Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS ONE 5:e14192

    Article  PubMed  CAS  Google Scholar 

  • Marucha J, Tylki-Szymanska A, Jakobkiewicz-Banecka J et al (2011) Improvement in the range of joint motion in seven patients with mucopolysaccharidosis type II during experimental gene expression-targeted isoflavone therapy (GET IT). Am J Med Genet A 155:2257–2262

    Article  CAS  Google Scholar 

  • Munoz-Rojas MV, Vieira T, Costa R, Fagondes S, John A, Jardim LB, Vedolin LM, Raymundo M, Dickson PI, Kakkis E, Giugliani R (2008) Intrathecal enzyme replacement therapy in a patient with mucopolysaccharidosis type I and symptomatic spinal cord compression. Am J Med Genet A 146:2538–2544

    Google Scholar 

  • Munoz-Rojas MV, Horovitz DD, Jardim LB, Raymundo M, Llerena JC Jr, de Magalhães Tde S, Vieira TA, Costa R, Kakkis E, Giugliani R (2010) Intrathecal administration of recombinant human N-acetylgalactosamine 4-sulfatase to a MPS VI patient with pachymeningitis cervicalis. Mol Genet Metab 99:346–350

    Article  PubMed  CAS  Google Scholar 

  • Neufeld EF, Muenzer J (2001) The mucopolysaccharidoses. In: Scriver CR et al (eds) The metabolic and molecular bases of inherited disease, vol III. McGraw-Hill, New York, pp 3421–3452

    Google Scholar 

  • Pastores GM, Barnett NL, Kolodny EH (2005) An open-label, noncomparative study of miglustat in type I Gaucher disease: efficacy and tolerability over 24 months of treatment. Clin Ther 27:1215–1227

    Article  PubMed  CAS  Google Scholar 

  • Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE (2007) Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 6:765–772

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska E, Jakobkiewicz-Banecka J, Baranska S et al (2006) Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur J Hum Genet 14:846–852

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska E, Jakóbkiewicz-Banecka J, Tylki-Szymańska A et al (2008) The use of genistin-rich isoflavone extract in substrate reduction therapy for Sanfilippo disease: open-label, pilot study in 10 pediatric patients. Curr Ther Res 69:166–179

    Article  CAS  Google Scholar 

  • Piotrowska E, Jakobkiewicz-Banecka J, Wegrzyn G (2010) Different amounts of isoflavones in various commercially available soy extracts in the light of gene expression-targeted isoflavone therapy. Phytother Res 24(Suppl 1):S109–S113

    Article  PubMed  Google Scholar 

  • Piotrowska E, Jakobkiewicz-Banecka J, Maryniak A et al (2011) Two-year follow-up of Sanfilippo Disease patients treated with a genistein-rich isoflavone extract: assessment of effects on cognitive functions and general status of patients. Med Sci Monit 17:CR196–CR202

    PubMed  CAS  Google Scholar 

  • Ponder KP (2008) Immune response hinders therapy for lysosomal storage diseases. J Clin Invest 118:2686–2689

    PubMed  CAS  Google Scholar 

  • Prasad VK, Kurtzberg J (2010) Transplant outcomes in mucopolysaccharidoses. Semin Hematol 47:59–69

    Article  PubMed  CAS  Google Scholar 

  • Roberts AL, Thomas BJ, Wilkinson AS, Fletcher JM, Byers S (2006) Inhibition of glycosaminoglycan synthesis using rhodamine B in a mouse model of mucopolysaccharidosis type IIIA. Pediatr Res 60:309–314

    Article  PubMed  CAS  Google Scholar 

  • Roberts AL, Rees MH, Klebe S, Fletcher JM, Byers S (2007) Improvement in behaviour after substrate deprivation therapy with rhodamine B in a mouse model of MPS IIIA. Mol Genet Metab 92:115–121

    Article  PubMed  CAS  Google Scholar 

  • Schultz ML, Tecedor L, Chang M, Davidson BL (2011) Clarifying lysosomal storage diseases. Trends Neurosci 34:401–410

    Article  PubMed  CAS  Google Scholar 

  • Tylki-Szymańska A, Groener JE, Kamiński ML, Ługowska A, Jurkiewicz E, Czartoryska B (2011) Gaucher disease due to saposin C deficiency, previously described as non-neuronopathic form—no positive effects after 2-years of miglustat therapy. Mol Genet Metab 104:627–630

    Article  PubMed  Google Scholar 

  • Van Gemund JJ, Daems WT, Vio PA, Giesberts MA (1971) Electron microscopy of intestinal suction-biopsy specimens as an aid in the diagnosis of mucopolysaccharidoses and other lysosomal storage diseases. Maandschr Kindergeneeskd 39:211–217

    PubMed  Google Scholar 

  • Wegrzyn A (2012) Gene expression-targeted isoflavone therapy. IUBMB Life 64:307–315

    Article  PubMed  CAS  Google Scholar 

  • Wegrzyn G, Wegrzyn A, Tylki-Szymanska A (2004) A general model for genetic regulation of turnover of glycosaminoglycans suggests a possible procedure for prediction of severity and clinical progress of mucopolysaccharidoses. Med Hypotheses 62:986–992

    Article  PubMed  CAS  Google Scholar 

  • Wegrzyn G, Tylki-Szymanska A, Liberek A et al (2007) Rapid deterioration of a patient with mucopolysaccharidosis type I during interruption of enzyme replacement therapy. Am J Med Genet A 143:1925–1927

    Google Scholar 

  • Wegrzyn G, Jakobkiewicz-Banecka J, Narajczyk M et al (2010) Why are behaviors of children suffering from various neuronopathic types of mucopolysaccharidoses different? Med Hypotheses 75:605–609

    Article  PubMed  CAS  Google Scholar 

  • Weinreb NJ, Barranger JA, Charrow J, Grabowski GA, Mankin HJ, Mistry P (2005) Guidance on the use of miglustat for treating patients with type 1 Gaucher disease. Am J Hematol 80:223–229

    Article  PubMed  CAS  Google Scholar 

  • Wraith JE (2008) Enzyme replacement therapy with idursulfase in patients with mucopolysaccharidosis type II. Acta Paediatr Suppl 97:76–78

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Sciences and Higher Education of Poland (Project Grant No. N N301 668540 to GW), and was operated within the Foundation for Polish Science Team Programme co-financed by the EU European Regional Development Fund (Grant No. TEAM/2008-2/7 to GW).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zyta Banecka-Majkutewicz.

About this article

Cite this article

Banecka-Majkutewicz, Z., Jakóbkiewicz-Banecka, J., Gabig-Cimińska, M. et al. Putative Biological Mechanisms of Efficiency of Substrate Reduction Therapies for Mucopolysaccharidoses. Arch. Immunol. Ther. Exp. 60, 461–468 (2012). https://doi.org/10.1007/s00005-012-0195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0195-9

Keywords

Navigation