Skip to main content

Advertisement

Log in

Pathophysiological Mechanisms of Carotid Plaque Vulnerability: Impact on Ischemic Stroke

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Stroke is among the major causes of mortality and disabilities in the world. About 80 % of all strokes in the anterior circulation are ischemic and up to 20 % of all ischemic strokes are caused by extracranial atherosclerotic carotid artery stenosis. The prevalence of a cervical internal carotid artery stenosis increases with age and can be found in 6.9 % of the elderly population (>65 years). Atherosclerotic changes of the carotid vessel wall can lead to plaque vulnerability and may result in arterio-arterial embolism, which frequently underlie carotid-related cerebrovascular ischemic events. Carotid atherosclerosis is characterised by inflammation, extensive degradation of extracellular matrix components, neovascularization, and as recently recognised is also affected by epigenetic changes. These factors accelerate the progression of atherosclerosis towards vulnerable plaques and increase the risk of ischemic stroke. In this review, the main pathophysiological mechanisms leading to rupture-prone carotid artery plaques and successive ischemic stroke are considered. It is important to recognise the heterogeneity of atherosclerosis and that various pathophysiological processes dissected in this review are not acting individually, but rather in a complementary manner. The identification and careful integration of all relevant factors will be required for the development of future diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADAM:

A disintegrin and metalloprotease domain

ADAMTS:

ADAM-related metalloproteases with a thrombospondin domain

AGEs:

Advanced glycation end products

Ang-1, -2:

Angiopoietins-1 and -2

CEA:

Carotid endarterectomy

CKD:

Chronic kidney disease

DM:

Diabetes mellitus

ECM:

Extracellular matrix

Eph:

Ephrins

FGF:

Fibroblast growth factor

ICA:

Internal carotid artery

HDL:

High density lipoproteins

HIF-1:

Hypoxia-inducible growth factor

IL:

Interleukin

INF-γ:

Interferon-gamma

LDL:

Low density lipoproteins

oxLDL:

Oxidised low density lipoproteins

LDL(-):

Electronegatively charged low density lipoproteins

MP:

Metalloprotease

MMP:

Matrix metalloprotease

PDGF:

Platelet-derived growth factor

PGs:

Proteoglycans

RAGE:

AGE receptor

TNF-α:

Tumour necrosis factor-alpha

VSMCs:

Vascular smooth muscle cells

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  • Alderman EL, Corley SD, Fisher LD, Chaitman BR, Faxon DP, Foster ED, Killip T, Sosa JA, Bourassa MG, CASS Participating Investigators and Staff (1993) Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). J Am Coll Cardiol 22:1141–1154

    PubMed  CAS  Google Scholar 

  • Apte SS (2004) A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol 36:981–985

    PubMed  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    PubMed  CAS  Google Scholar 

  • Avogaro P, Bon GB, Cazzolato G (1988) Presence of a modified low density lipoprotein in humans. Arteriosclerosis 8:79–87

    PubMed  CAS  Google Scholar 

  • Bayarsaihan D (2011) Epigenetic mechanisms in inflammation. J Dent Res 90:9–17

    PubMed  CAS  Google Scholar 

  • Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nature 6:32–43

    CAS  Google Scholar 

  • Boumber Y, Issa JP (2011) Epigenetics in cancer: what’s the future? Oncology 25(220–6):228

    Google Scholar 

  • Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282

    PubMed  CAS  Google Scholar 

  • Caffarelli E, Filetici P (2011) Epigenetic regulation in cancer development. Front Biosci 17:2682–2694

    Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    PubMed  CAS  Google Scholar 

  • Castillo-Díaz SA, Garay-Sevilla ME, Hernández-González MA, Solís-Martínez MO, Zaina S (2010) Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries. Int J Mol Med 26:691–700

    PubMed  Google Scholar 

  • Chen CH, Walterscheid JP (2006) Plaque angiogenesis versus compensatory arteriogenesis in atherosclerosis. Circ Res 99:787–789

    PubMed  CAS  Google Scholar 

  • Chen CH, Jiang T, Yang JH, Jiang W, Lu J, Marathe GK, Pownall HJ, Ballantyne CM, McIntyre TM, Henry PD, Yang CY (2003) Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 107:2102–2108

    PubMed  Google Scholar 

  • Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation 87:1179–1187

    PubMed  CAS  Google Scholar 

  • Clarke M, Bennett M (2006a) Defining the role of vascular smooth muscle cell apoptosis in atherosclerosis. Cell Cycle 5:2329–2331

    PubMed  CAS  Google Scholar 

  • Clarke M, Bennett M (2006b) The emerging role of vascular smooth muscle cell apoptosis in atherosclerosis and plaque stability. Am J Nephrol 26:531–535

    PubMed  Google Scholar 

  • Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28:488–494

    PubMed  CAS  Google Scholar 

  • Di Stefano R, Felice F, Balbarini A (2009) Angiogenesis as risk factor for plaque vulnerability. Curr Pharm 15:1095–1106

    Google Scholar 

  • Dollery CM, Libby P (2006) Atherosclerosis and proteinase activation. Cardiovasc Res 69:625–635

    PubMed  CAS  Google Scholar 

  • Dong C, Yoon W, Goldschmidt-Clermont PJ (2002) DNA methylation and atherosclerosis. J Nutr 132:2406S–2409S

    PubMed  CAS  Google Scholar 

  • Duffy MJ, McKiernan E, O’Donovan N, McGowan PM (2009) The role of ADAMs in disease pathophysiology. Clin Chim Acta 403:31–36

    PubMed  CAS  Google Scholar 

  • Eckstein HH (2012) Evidence-based management of carotid stenosis: recommendations from international guidelines. J Cardiovasc Surg (Torino) 53:3–13

    CAS  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    PubMed  CAS  Google Scholar 

  • Fabjan JS, Abuja PM, Schaur RJ, Sevanian A (2001) Hypochlorite induces the formation of LDL(−), a potentially atherogenic low density lipoprotein subspecies. FEBS Lett 499:69–72

    PubMed  CAS  Google Scholar 

  • Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:779–789

    Google Scholar 

  • Ferri N, Paoletti R, Corsini A (2006) Biomarkers for atherosclerosis: pathophysiological role and pharmacological modulation. Curr Opin Lipidol 17:495–501

    PubMed  CAS  Google Scholar 

  • Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32:S112–S119

    PubMed  CAS  Google Scholar 

  • Formato M, Farina M, Spirito R, Maggioni M, Guarino A, Cherchi GM, Biglioli P, Edelstein C, Scanu AM (2004) Evidence for a proinflammatory and proteolytic environment in plaques from endarterectomy segments of human carotid arteries. Arterioscler Thromb Vasc Biol 24:129–135

    PubMed  CAS  Google Scholar 

  • Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    PubMed  CAS  Google Scholar 

  • Galis ZS, Sukhova GK, Libby P (1995) Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinase activity in vascular tissue. FASEB J 9:974–980

    PubMed  CAS  Google Scholar 

  • Garcia-Touchard A, Henry TD, Sangiorgi G, Spagnoli LG, Mauriello A, Conover C, Schwartz RS (2005) Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 25:1119–1127

    PubMed  CAS  Google Scholar 

  • Ginsberg HN, Huang LS (2000) The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J Cardiovasc Risk 7:325–331

    PubMed  CAS  Google Scholar 

  • Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D et al (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483

    PubMed  CAS  Google Scholar 

  • Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, Welgus HG, Wickline SA, Parks WC (1996) Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci USA 93:9748–9753

    PubMed  CAS  Google Scholar 

  • Halvorsen B, Otterdal K, Dahl TB, Skjelland M, Gullestad L, Øie E, Aukrust P (2008) Atherosclerotic plaque stability—what determines the fate of a plaque? Prog Cardiovasc Dis 51:183–194

    PubMed  CAS  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    PubMed  CAS  Google Scholar 

  • Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212

    PubMed  CAS  Google Scholar 

  • Heider P, Pelisek J, Poppert H, Eckstein HH (2009) Evaluation of serum matrix metalloproteinases as biomarkers for detection of neurological symptoms in carotid artery disease. Vasc Endovascular Surg 43:551–560

    PubMed  Google Scholar 

  • Heilmann C, Beyersdorf F, Lutter G (2002) Collateral growth: cells arrive at the construction site. Cardiovasc Surg 10:570–578

    PubMed  Google Scholar 

  • Herceg Z, Vaissière T (2011) Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics 6:804–819

    PubMed  CAS  Google Scholar 

  • Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056

    PubMed  CAS  Google Scholar 

  • Ingrosso D, Perna AF (2009) Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim Biophys Acta 1790:892–899

    PubMed  CAS  Google Scholar 

  • Jones GC, Riley GP (2005) ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther 7:160–169

    PubMed  Google Scholar 

  • Karamysheva AF (2008) Mechanisms of angiogenesis. Biochemistry (Mosc) 73:751–762

    CAS  Google Scholar 

  • Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J, Goldschmidt-Clermont PJ, Issa JP (2007) Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in vitro vascular senescence. Biochim Biophys Acta 1772:72–80

    PubMed  CAS  Google Scholar 

  • Kinsella MG, Bressler SL, Wight TN (2004) The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit Rev Eukaryot Gene Expr 14:203–234

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Hirawa N, Yatsu K, Kobayashi Y, Yamamoto Y, Saka S, Andoh D, Toya Y, Yasuda G, Umemura S (2009) Relationship between silent brain infarction and chronic kidney disease. Nephrol Dial Transplant 24:201–207

    PubMed  Google Scholar 

  • Kunz J (2007) Matrix metalloproteinases and atherogenesis in dependence of age. Gerontology 53:63–73

    PubMed  CAS  Google Scholar 

  • Labat-Robert J, Bihari-Varga M, Robert L (1990) Extracellular matrix. FEBS Lett 268:386–393

    PubMed  CAS  Google Scholar 

  • Lahtz C, Pfeifer GP (2011) Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol 3:51–58

    PubMed  CAS  Google Scholar 

  • Langheinrich AC, Kampschulte M, Buch T, Bohle RM (2007) Vasa vasorum and atherosclerosis—Quid novi? Thromb Haemost 97:873–879

    PubMed  CAS  Google Scholar 

  • Lemaitre V, D’Armiento J (2006) Matrix metalloproteinases in development and disease. Birth Defects Res C Embryo Today 78:1–10

    PubMed  CAS  Google Scholar 

  • Leskinen Y, Lehtimaki T, Loimaala A, Lautamatti V, Kallio T, Huhtala H, Salenius JP, Saha H (2003) Carotid atherosclerosis in chronic renal failure—the central role of increased plaque burden. Atherosclerosis 171:295–302

    PubMed  CAS  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    PubMed  CAS  Google Scholar 

  • Libby P, Ridker PM, Hansson GK (2002) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    Google Scholar 

  • Libby P, Ridker PM, Hansson GK, Leducq Transatlantic Network on Atherothrombosis (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54:2129–2138

    PubMed  CAS  Google Scholar 

  • Lim HS, Lip GY, Blann AD (2005) Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF glycaemic control endothelial damage/dysfunction and atherosclerosis. Atherosclerosis 80:113–118

    Google Scholar 

  • Loftus IM, Naylor AR, Goodall S, Crowther M, Jones L, Bell PR, Thompson MM (2000) Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke 31:40–47

    PubMed  CAS  Google Scholar 

  • London GM, Marchais SJ, Guérin AP, Boutouyrie P, Métivier F, de Vernejoul MC (2008) Association of bone activity, calcium load, aortic stiffness, and calcifications in ESRD. J Am Soc Nephrol 19:1827–1835

    PubMed  CAS  Google Scholar 

  • Lu J, Yang JH, Burns AR, Chen HH, Tang D, Walterscheid JP, Suzuki S, Yang CY, Sawamura T, Chen CH (2009) Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res 104:619–627

    PubMed  CAS  Google Scholar 

  • Lund G, Zaina S (2011) Atherosclerosis: an epigenetic balancing act that goes wrong. Curr Atheroscler Rep 13:208–214

    PubMed  CAS  Google Scholar 

  • Manthey HD, Zernecke A (2011) Dendritic cells in atherosclerosis: functions in immune regulation and beyond. Thromb Haemost 106:772–778

    PubMed  CAS  Google Scholar 

  • Mello AP, da Silva IT, Abdalla DS, Damasceno NR (2011) Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 215:257–265

    PubMed  CAS  Google Scholar 

  • Millichip MI, Dallas DJ, Wu E, Dale S, McKie N (1998) The metallo-disintegrin ADAM 10 from bovine kidney has type IV collagenase activity in vitro. Biochem Biophys Res Commun 245:594–598

    PubMed  CAS  Google Scholar 

  • Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628

    PubMed  CAS  Google Scholar 

  • Montecucco F, Lenglet S, Gayet-Ageron A, Bertolotto M, Pelli G, Palombo D, Pane B, Spinella G, Steffens S, Raffaghello L, Pistoia V, Ottonello L, Pende A, Dallegri F, Mach F (2010) Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke 41:1394–1404

    PubMed  Google Scholar 

  • Montecucco F, Di Marzo V, da Silva RF, Vuilleumier N, Capettini L, Lenglet S, Pagano S, Piscitelli F, Quintao S, Bertolotto M, Pelli G, Galan K, Pilet L, Kuzmanovic K, Burger F, Pane B, Spinella G, Braunersreuther V, Gayet-Ageron A, Pende A, Viviani GL, Palombo D, Dallegri F, Roux-Lombard P, Santos RA, Stergiopulos N, Steffens S, Mach F (2012) The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur Heart J 33:846–856

    PubMed  CAS  Google Scholar 

  • Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS (2011) Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther 9:1315–1330

    PubMed  Google Scholar 

  • Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76:S85–S90

    PubMed  Google Scholar 

  • Muller JE, Tofler GH (1992) Triggering and hourly variation of onset of arterial thrombosis. Ann Epidemiol 2:393–405

    PubMed  CAS  Google Scholar 

  • Murata K, Motayama T, Kotake C (1986) Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis 60:251–262

    PubMed  CAS  Google Scholar 

  • Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani-Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003a) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:21664–21672

    Google Scholar 

  • Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003b) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108:1772–1778

    PubMed  Google Scholar 

  • Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, Komatsu R, Ikura Y, Ogami M, Shimada Y, Ehara S, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE (2002) Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106:2894–2900

    PubMed  Google Scholar 

  • Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85:1–31

    PubMed  CAS  Google Scholar 

  • Newby AC, Southgate KM, Davies M (1994) Extracellular matrix degrading metallo-proteinases in the pathogenesis of arteriosclerosis. Basic Res Cardiol 89:59–70

    PubMed  CAS  Google Scholar 

  • Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, Clowes AW (1995) Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 92:1393–1398

    PubMed  CAS  Google Scholar 

  • Ordovás JM, Smith CE (2010) Epigenetics and cardiovascular disease. Nat Rev Cardiol 7:510–519

    PubMed  Google Scholar 

  • Pelisek J, Shimizu M, Nikol S (2004) Differential developmental origin of arteries: impact on angiogenesis and arteriogenesis. Med Chem Rev 1:317–326

    CAS  Google Scholar 

  • Pelisek J, Rudelius M, Zepper P, Poppert H, Reeps C, Schuster T, Eckstein HH (2009) Multiple biological predictors for vulnerable carotid lesions. Cerebrovasc Dis 28:601–610

    PubMed  Google Scholar 

  • Pelisek J, Assadian A, Sarkar O, Eckstein HH, Frank H (2010) Carotid plaque composition in chronic kidney disease: a retrospective analysis of patients undergoing carotid endarterectomy. Eur J Vasc Endovasc Surg 39:11–16

    PubMed  CAS  Google Scholar 

  • Pelisek J, Hahntow IN, Eckstein HH, Ockert S, Reeps C, Heider P, Luppa PB, Frank H (2011) Impact of chronic kidney disease on carotid plaque vulnerability. J Vasc Surg 54:1643–1649

    PubMed  Google Scholar 

  • Pelisek J, Reeps C, Ockert S, Zimmermann A, Zepper P, Poppert H, Eckstein HH (2012) Evaluation of serum biomarkers for patients at increased risk of stroke. Int J Vasc Med [Ahead of print]

  • Pelisek J, Well G, Reeps C, Rudelius M, Kuehnl A, Culmes M, Poppert H, Zimmermann A, Berger H, Eckstein HH (2012) Neovascularization and angiogenic factors in advanced human carotid artery stenosis. Circ J [Epub, ahead of print]

  • Perco P, Pleban C, Kainz A, Lukas A, Mayer B, Oberbauer R (2006) Protein biomarkers associated with acute renal failure and chronic kidney disease. Eur J Clin Invest 36:753–763

    PubMed  CAS  Google Scholar 

  • Plutzky J (2003) The vascular biology of atherosclerosis. Am J Med 115:55S–61S

    PubMed  CAS  Google Scholar 

  • Porter S, Clark IM, Kevorkian L, Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386:15–27

    PubMed  CAS  Google Scholar 

  • Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol 176:1–40

    PubMed  Google Scholar 

  • Radford EJ, Ferrón SR, Ferguson-Smith AC (2011) Genomic imprinting as an adaptative model of developmental plasticity. FEBS Lett 585:2059–2066

    PubMed  CAS  Google Scholar 

  • Raggi P, Callister TQ, Cooil B, He ZX, Lippolis NJ, Russo DJ, Zelinger A, Mahmarian JJ (2000) Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101:850–855

    PubMed  CAS  Google Scholar 

  • Redgrave JN, Gallagher PJ, Lovett JK, Rothwell PM (2008) Critical cap thickness and rupture in symptomatic carotid plaques: the Oxford Plaque Study. Stroke 39:1722–1729

    PubMed  Google Scholar 

  • Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A, Eckstein HH (2009) Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 76:243–252

    PubMed  CAS  Google Scholar 

  • Rey FE, Pagano PJ (2002) The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 22:1962–1971

    PubMed  CAS  Google Scholar 

  • Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126

    PubMed  CAS  Google Scholar 

  • Rossi A, Bonfante L, Giacomini A, Calabro A, Rossi G, Saller A, Abbruzzese E, Baldo G, Mastrosimone S, Beccari A, Baiocchi MR, de Silvestro L, Roncali D, Bolzonella R, Giardin C, Antonello A, Normanno M, Crepaldi G, Borsatti A (1996) Carotid artery lesions in patients with nondiabetic chronic renal failure. Am J Kidney Dis 27:58–66

    PubMed  CAS  Google Scholar 

  • Rothwell PM (2000) Carotid artery disease and the risk of ischaemic stroke and coronary vascular events. Cerebrovasc Dis 10:21–33

    PubMed  Google Scholar 

  • Roy R, Zhang B, Moses MA (2006) Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res 312:608–622

    PubMed  CAS  Google Scholar 

  • Russo D, Morrone LF, Brancaccio S, Napolitano P, Salvatore E, Spadola R, Imbriaco M, Russo CV, Andreucci VE (2009) Pulse pressure and presence of coronary artery calcification. Clin J Am Soc Nephrol 4:316–322

    PubMed  Google Scholar 

  • Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP (2004) Dictinct roles for ADAM 10 and ADAM 17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779

    PubMed  CAS  Google Scholar 

  • Savage T, Clarke AL, Giles M, Tomson CR, Raine AE (1998) Calcified plaque is common in the carotid and femoral arteries of dialysis patients without clinical vascular disease. Nephrol Dial Transplant 13:2004–2012

    PubMed  CAS  Google Scholar 

  • Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterios Thromb Vasc Biol 23:1143–1151

    CAS  Google Scholar 

  • Schmermund A, Erbel R (2001) Unstable coronary plaque and its relation to coronary calcium. Circulation 104:1682–1687

    PubMed  CAS  Google Scholar 

  • Schmidt AM, Stern D (2000) Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep 2:430–436

    PubMed  CAS  Google Scholar 

  • Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteaes: multidomain proteins with multiple functions. Genes Dev 17:7–30

    PubMed  CAS  Google Scholar 

  • Serman A, Vlahović M, Serman L, Bulić-Jakus F (2006) DNA methylation as a regulatory mechanism for gene expression in mammals. Coll Antropol 30:665–671

    PubMed  CAS  Google Scholar 

  • Shen CM, Mao SJ, Huang GS, Yang PC, Chu RM (2001) Stimulation of smooth muscle cell proliferation by ox-LDL- and acetyl LDL-induced macrophage-derived foam cells. Life Sci 70:443–452

    PubMed  CAS  Google Scholar 

  • Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41:278–286

    PubMed  CAS  Google Scholar 

  • Shimizu M, Pelisek J, Nikol S (2002) Vasculogenesis and angiogenesis depend on the developmental origin in the arterial tree. Curr Med Chem 9:1619–1630

    PubMed  CAS  Google Scholar 

  • Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218:7–29

    PubMed  Google Scholar 

  • Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W Jr, Richardson M, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD et al (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 85:391–405

    PubMed  CAS  Google Scholar 

  • Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478

    PubMed  CAS  Google Scholar 

  • Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92:1355–1374

    PubMed  CAS  Google Scholar 

  • Stenvinkel P, Karimi M, Johansson S, Axelsson J, Suliman M, Lindholm B, Heimbürger O, Barany P, Alvestrand A, Nordfors L, Qureshi AR, Ekström TJ, Schalling M (2007) Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease? J Intern Med 261:488–499

    PubMed  CAS  Google Scholar 

  • Sundström J, Vasan RS (2006) Circulating biomarkers of extracellular matrix remodeling and risk of atherosclerotic events. Curr Opin Lipidol 17:45–53

    PubMed  Google Scholar 

  • Tang BL (2001) ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 33:33–44

    PubMed  CAS  Google Scholar 

  • Taylor AJ, Burke AP, O’Malley PG, Farb A, Malcom GT, Smialek J, Virmani R (2000) A comparison of the Framingham risk index, coronary artery calcification, and culprit plaque morphology in sudden cardiac death. Circulation 101:1243–1248

    PubMed  CAS  Google Scholar 

  • Thakore AH, Guo CY, Larson MG, Corey D, Wang TJ, Vasan RS, D’Agostino RB Sr, Lipinska I, Keaney JF Jr, Benjamin EJ, O’Donnell CJ (2007) Association of multiple inflammatory markers with carotid intimal medial thickness and stenosis (from the Framingham Heart Study). Am J Cardiol 99:1598–1602

    PubMed  Google Scholar 

  • Tomasik A, Jacheć W, Skrzep-Poloczek B, Widera-Romuk E, Wodniecki J, Wojciechowska C (2003) Circulating electronegatively charged low-density lipoprotein in patients with angiographically documented coronary artery disease. Scand J Clin Lab Invest 63:259–265

    PubMed  CAS  Google Scholar 

  • Tomkin GH, Owens D (2001) Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev 17:27–43

    PubMed  CAS  Google Scholar 

  • Turunen MP, Aavik E, Ylä-Herttuala S (2009) Epigenetics and atherosclerosis. Biochim Biophys Acta 1790:886–891

    PubMed  CAS  Google Scholar 

  • van Goor H, Melenhorst WB, Turner AJ, Holgate ST (2009) Adamalysins in biology and disease. J Pathol 219:277–286

    PubMed  Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2012:62–1275

    Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscl Thromb Vasc Biol 25:205420–205461

    Google Scholar 

  • Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18

    PubMed  CAS  Google Scholar 

  • Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815

    PubMed  CAS  Google Scholar 

  • Wight TN (2005) The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)! Arterioscler Thromb Vasc Biol 25:12–14

    PubMed  CAS  Google Scholar 

  • Williams H, Johnson JL, Jackson CL, White SJ, George SJ (2010) MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res 87:137–146

    PubMed  CAS  Google Scholar 

  • Zernecke A, Weber C (2005) Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol 100(2):93–100

    PubMed  CAS  Google Scholar 

  • Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 86:192–201

    PubMed  CAS  Google Scholar 

  • Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol 28:1897–1908

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Pelisek.

About this article

Cite this article

Pelisek, J., Eckstein, HH. & Zernecke, A. Pathophysiological Mechanisms of Carotid Plaque Vulnerability: Impact on Ischemic Stroke. Arch. Immunol. Ther. Exp. 60, 431–442 (2012). https://doi.org/10.1007/s00005-012-0192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0192-z

Keywords

Navigation