Skip to main content

Advertisement

Log in

Neutrophil Myeloperoxidase: Soldier and Statesman

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

An Erratum to this article was published on 26 November 2014

Abstract

Myeloperoxidase (MPO) is a major protein constituent of the primary granules of vertebrate neutrophils. It catalyses the hydrogen peroxide-mediated oxidation of halide ions to hypohalous acids, especially HOCl. These reactive oxygen species can participate in a variety of secondary reactions, leading to modifications of amino acids and many types of biological macromolecules. The classic paradigm views MPO as a component of the phagocyte oxygen-dependent intracellular microbicidal system, and thus an important arm of the effector phase of innate immune responses. However, the limited immunodeficiency associated with lack of MPO in mouse and human models has challenged this paradigm. In this review we examine more recent information on the interaction between MPO, its bioreactive reaction products, and targets within the inflammatory microenvironment. We propose that two assumptions of the current model may require revisiting. First, many important targets of MPO modification are extracellular, rather than present only within the phagolysosome, such as various components of neutrophil extracellular traps. Second, we suggest that the pro-inflammatory pathological role of MPO may be a particular feature of chronic inflammation. In the physiological setting of acute neutrophil-mediated inflammation MPO may also form part of a negative feedback loop which down-regulates inflammation, limits tissue damage, and facilitates the switch from innate to adaptive immunity. This different perspective on this well-studied enzyme may usefully inform further research into its function in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANCA:

Anti-neutrophil cytoplasmic autoantibodies

DC:

Dendritic cell

ER:

Endoplasmic reticulum

HDL:

High density lipoprotein

HOCl:

Hypochlorous acid

HOBr:

Hypobromous acid

H2O2 :

Hydrogen peroxide

LDL:

Low density lipoprotein

MMP:

Matrix metalloproteinase

MPO:

Myeloperoxidase

NADPH:

Nicotinamide adenine dinucleotide phosphate

NET:

Neutrophil extracellular trap

PAMP:

Pathogen-associated molecular pattern

PRR:

Pattern recognition receptor

TLRs:

Toll-like receptors

SVV:

Small-vessel vasculitides

References

  • Adachi H, Tsujimoto M (2006) Endothelial scavenger receptors. Prog Lipid Res 45:379–404

    PubMed  CAS  Google Scholar 

  • Alderman CJ, Bunyard PR, Chain BM et al (2002a) Effects of oxidised low density lipoprotein on dendritic cells: a possible immunoregulatory component of the atherogenic micro-environment? Cardiovasc Res 55:806–819

    PubMed  CAS  Google Scholar 

  • Alderman CJ, Shah S, Foreman JC et al (2002b) The role of advanced oxidation protein products in regulation of dendritic cell function. Free Radic Biol Med 32:377–385

    PubMed  CAS  Google Scholar 

  • Allen RC, Stjernholm RL, Steele RH (1972) Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun 47:679–684

    PubMed  CAS  Google Scholar 

  • Allison ME, Fearon DT (2000) Enhanced immunogenicity of aldehyde-bearing antigens: a possible link between innate and adaptive immunity. Eur J Immunol 30:2881–2887

    PubMed  CAS  Google Scholar 

  • Andrews PC, Krinsky NI (1981) The reductive cleavage of myeloperoxidase in half, producing enzymically active hemi-myeloperoxidase. J Biol Chem 256:4211–4218

    PubMed  CAS  Google Scholar 

  • Aratani Y, Koyama H, Nyui S et al (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67:1828–1836

    PubMed  CAS  Google Scholar 

  • Aratani Y, Kura F, Watanabe H et al (2000) Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J Infect Dis 182:1276–1279

    PubMed  CAS  Google Scholar 

  • Aratani Y, Kura F, Watanabe H et al (2002) Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis 185:1833–1837

    PubMed  CAS  Google Scholar 

  • Arisawa F, Tatsuzawa H, Kambayashi Y et al (2003) MCLA-dependent chemiluminescence suggests that singlet oxygen plays a pivotal role in myeloperoxidase-catalysed bactericidal action in neutrophil phagosomes. Luminescence 18:229–238

    PubMed  CAS  Google Scholar 

  • Arnhold J, Flemmig J (2010) Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys 500:92–106

    PubMed  CAS  Google Scholar 

  • Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47

    PubMed  CAS  Google Scholar 

  • Babior BM, Takeuchi C, Ruedi J et al (2003) Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci USA 100:3031–3034

    PubMed  CAS  Google Scholar 

  • Bergt C, Pennathur S, Fu X et al (2004) The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci USA 101:13032–13037

    PubMed  CAS  Google Scholar 

  • Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    PubMed  CAS  Google Scholar 

  • Brennan ML, Anderson MM, Shih DM et al (2001a) Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest 107:419–430

    PubMed  CAS  Google Scholar 

  • Brennan M, Gaur A, Pahuja A et al (2001b) Mice lacking myeloperoxidase are more susceptible to experimental autoimmune encephalomyelitis. J Neuroimmunol 112:97–105

    PubMed  CAS  Google Scholar 

  • Carrasco-Marin E, Paz-Miguel JE, Lopez-Mato P et al (1998) Oxidation of defined antigens allows protein unfolding and increases both proteolytic processing and exposes peptide epitopes which are recognized by specific T cells. Immunology 95:314–321

    PubMed  CAS  Google Scholar 

  • Chapman AL, Hampton MB, Senthilmohan R et al (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem 277:9757–9762

    PubMed  CAS  Google Scholar 

  • Chapman AL, Skaff O, Senthilmohan R et al (2009) Hypobromous acid and bromamine production by neutrophils and modulation by superoxide. Biochem J 417:773–781

    PubMed  CAS  Google Scholar 

  • Chen H, Zhang SM, Hernan MA et al (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1064

    PubMed  Google Scholar 

  • Chiang CL, Ledermann JA, Rad AN et al (2006) Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells. Cancer Immunol Immunother 55:1384–1395

    PubMed  Google Scholar 

  • Chiang CL, Ledermann JA, Aitkens E et al (2008) Oxidation of ovarian epithelial cancer cells by hypochlorous acid enhances immunogenicity and stimulates T cells that recognize autologous primary tumor. Clin Cancer Res 14:4898–4907

    PubMed  CAS  Google Scholar 

  • Choi DK, Pennathur S, Perier C et al (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. J Neurosci 25:6594–6600

    PubMed  CAS  Google Scholar 

  • Cramer R, Soranzo MR, Dri P et al (1982) Incidence of myeloperoxidase deficiency in an area of northern Italy: histochemical, biochemical and functional studies. Br J Haematol 51:81–87

    PubMed  CAS  Google Scholar 

  • Davies DJ, Moran JE, Niall JF et al (1982) Segmental necrotising glomerulonephritis with antineutrophil antibody: possible arbovirus aetiology? Br Med J (Clin Res Ed) 285:606

    CAS  Google Scholar 

  • Davies MJ, Hawkins CL, Pattison DI et al (2008) Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1199–1234

    PubMed  CAS  Google Scholar 

  • de Boer OJ, van der Meer JJ, Teeling P et al (2010) Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques. J Pathol 220:499–508

    PubMed  Google Scholar 

  • Deimann W (1984) Endogenous peroxidase activity in mononuclear phagocytes. Prog Histochem Cytochem 15:1–58

    PubMed  CAS  Google Scholar 

  • Eyerich K, Rombold S, Foerster S et al (2007) Altered, but not diminished specific T cell response in chronic mucocutaneous candidiasis patients. Arch Dermatol Res 299:475–481

    PubMed  CAS  Google Scholar 

  • Falk RJ, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318:1651–1657

    PubMed  CAS  Google Scholar 

  • Fu X, Kassim SY, Parks WC et al (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278:28403–28409

    PubMed  CAS  Google Scholar 

  • Goedken M, McCormick S, Leidal KG et al (2007) Impact of two novel mutations on the structure and function of human myeloperoxidase. J Biol Chem 282:27994–28003

    PubMed  CAS  Google Scholar 

  • Goldschmeding R, van der Schoot CE, ten Bokkel HD et al (1989) Wegener’s granulomatosis autoantibodies identify a novel diisopropylfluorophosphate-binding protein in the lysosomes of normal human neutrophils. J Clin Invest 84:1577–1587

    PubMed  CAS  Google Scholar 

  • Grone HJ, Grone EF, Malle E (2002) Immunohistochemical detection of hypochlorite-modified proteins in glomeruli of human membranous glomerulonephritis. Lab Invest 82:5–14

    PubMed  CAS  Google Scholar 

  • Guilpain P, Servettaz A, Batteux F et al (2008) Natural and disease associated anti-myeloperoxidase (MPO) autoantibodies. Autoimmun Rev 7:421–425

    PubMed  CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A 147:332–351

    CAS  Google Scholar 

  • Hansson GK (1999) Inflammation and immune response in atherosclerosis. Curr Atheroscler Rep 1:150–155

    PubMed  CAS  Google Scholar 

  • Hansson M, Olsson I, Nauseef WM (2006) Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys 445:214–224

    PubMed  CAS  Google Scholar 

  • Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374

    PubMed  CAS  Google Scholar 

  • Hawkins CL, Davies MJ (1998) Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochem J 332(Pt 3):617–625

    PubMed  CAS  Google Scholar 

  • Hawkins CL, Davies MJ (2005) Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function. Chem Res Toxicol 18:1600–1610

    PubMed  CAS  Google Scholar 

  • Hawkins CL, Pattison DI, Davies MJ (2003) Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25:259–274

    PubMed  CAS  Google Scholar 

  • Hawkins CL, Pattison DI, Stanley NR et al (2008) Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation. Biochem J 416:441–452

    PubMed  CAS  Google Scholar 

  • He C, Tamimi RM, Hankinson SE et al (2009) A prospective study of genetic polymorphism in MPO, antioxidant status, and breast cancer risk. Breast Cancer Res Treat 113:585–594

    PubMed  CAS  Google Scholar 

  • Henderson JP, Byun J, Williams MV et al (2001) Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J Biol Chem 276:7867–7875

    PubMed  CAS  Google Scholar 

  • Hirche TO, Gaut JP, Heinecke JW et al (2005) Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense. J Immunol 174:1557–1565

    PubMed  CAS  Google Scholar 

  • Hoy A, Trégouët D, Leininger-Muller B et al (2001) Serum myeloperoxidase concentration in a healthy population: biological variations, familial resemblance and new genetic polymorphisms. Eur J Hum Genet 9:780–786

    PubMed  CAS  Google Scholar 

  • Jeitner TM, Xu H, Gibson GE (2005) Inhibition of the alpha-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine. J Neurochem 92:302–310

    PubMed  CAS  Google Scholar 

  • Kain R, Exner M, Brandes R et al (2008) Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 14:1088–1096

    PubMed  CAS  Google Scholar 

  • Kettle AJ, Chan T, Osberg I et al (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170:1317–1323

    PubMed  Google Scholar 

  • King CC, Jefferson MM, Thomas EL (1997) Secretion and inactivation of myeloperoxidase by isolated neutrophils. J Leukoc Biol 61:293–302

    PubMed  CAS  Google Scholar 

  • Kitahara M, Eyre HJ, Simonian Y et al (1981) Hereditary myeloperoxidase deficiency. Blood 57:888–893

    PubMed  CAS  Google Scholar 

  • Klebanoff SJ (1967) Iodination of bacteria: a bactericidal mechanism. J Exp Med 126:1063–1078

    PubMed  CAS  Google Scholar 

  • Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111:383–389

    PubMed  CAS  Google Scholar 

  • Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    PubMed  CAS  Google Scholar 

  • Klinke A, Nussbaum C, Kubala L et al (2011) Myeloperoxidase attracts neutrophils by physical forces. Blood 117:1350–1358

    PubMed  CAS  Google Scholar 

  • Kontny E, Maśliński W, Marcinkiewicz J (2003) Anti-inflammatory activities of taurine chloramine: implication for immunoregulation and pathogenesis of rheumatoid arthritis. Adv Exp Med Biol 526:329–340

    PubMed  CAS  Google Scholar 

  • Kutter D, Devaquet P, Vanderstocken G et al (2000) Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit? Acta Haematol 104:10–15

    PubMed  CAS  Google Scholar 

  • Lanza F (1998) Clinical manifestation of myeloperoxidase deficiency. J Mol Med 76:676–681

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Cline MJ (1969) Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest 48:1478–1488

    PubMed  CAS  Google Scholar 

  • Little MA, Smyth CL, Yadav R et al (2005) Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood 106:2050–2058

    PubMed  CAS  Google Scholar 

  • Loria V, Dato I, Graziani F et al (2008) Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators Inflamm 2008:135625

    PubMed  Google Scholar 

  • Malle E, Marsche G, Arnhold J et al (2006) Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta 1761:392–415

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J (1997) Neutrophil chloramines: missing links between innate and acquired immunity. Immunol Today 18:577–580

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J, Chain BM, Olszowska E et al (1991) Enhancement of immunogenic properties of ovalbumin as a result of its chlorination. Int J Biochem 23:1393–1395

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J, Olszowska E, Olszowski S et al (1992) Enhancement of trinitrophenyl-specific humoral response to TNP proteins as the result of carrier chlorination. Immunology 76:385–388

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J, Czajkowska B, Grabowska A et al (1994) Differential effects of chlorination of bacteria on their capacity to generate NO, TNF-alpha and IL-6 in macrophages. Immunology 83:611–616

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J, Grabowska A, Bereta J et al (1995) Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J Leukoc Biol 58:667–674

    PubMed  CAS  Google Scholar 

  • Marquez LA, Dunford HB (1994) Chlorination of taurine by myeloperoxidase. Kinetic evidence for an enzyme-bound intermediate. J Biol Chem 269:7950–7956

    PubMed  CAS  Google Scholar 

  • Marsche G, Weigle B, Sattler W et al (2007) Soluble RAGE blocks scavenger receptor CD36-mediated uptake of hypochlorite-modified low-density lipoprotein. FASEB J 21:3075–3082

    PubMed  CAS  Google Scholar 

  • Matsuura E, Hughes GR, Khamashta MA (2008) Oxidation of LDL and its clinical implication. Autoimmun Rev 7:558–566

    PubMed  CAS  Google Scholar 

  • Metzler KD, Fuchs TA, Nauseef WM et al (2011) Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117:953–959

    PubMed  CAS  Google Scholar 

  • Milla C, Yang S, Cornfield DN et al (2004) Myeloperoxidase deficiency enhances inflammation after allogeneic marrow transplantation. Am J Physiol Lung Cell Mol Physiol 287:L706–L714

    PubMed  CAS  Google Scholar 

  • Muz B, Kontny E, Marcinkiewicz J et al (2008) Heme oxygenase-1 participates in the anti-inflammatory activity of taurine chloramine. Amino Acids 35:397–402

    PubMed  CAS  Google Scholar 

  • Nagra RM, Becher B, Tourtellotte WW et al (1997) Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol 78:97–107

    PubMed  CAS  Google Scholar 

  • Naruko T, Ueda M, Haze K et al (2002) Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106:2894–2900

    PubMed  Google Scholar 

  • Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    PubMed  CAS  Google Scholar 

  • Nauseef WM, McCormick S, Yi H (1992) Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase. Blood 80:2622–2633

    PubMed  CAS  Google Scholar 

  • Nauseef WM, McCormick SJ, Clark RA (1995) Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem 270:4741–4747

    PubMed  CAS  Google Scholar 

  • Nauseef WM, McCormick SJ, Goedken M (1998) Coordinated participation of calreticulin and calnexin in the biosynthesis of myeloperoxidase. J Biol Chem 273:7107–7111

    PubMed  CAS  Google Scholar 

  • Olsson I, Persson AM, Stromberg K (1984) Biosynthesis, transport and processing of myeloperoxidase in the human leukaemic promyelocytic cell line HL-60 and normal marrow cells. Biochem J 223:911–920

    PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18:11–18

    PubMed  CAS  Google Scholar 

  • Pakakasama S, Chen TT, Frawley W et al (2003) Myeloperoxidase promotor polymorphism and risk of hepatoblastoma. Int J Cancer 106:205–207

    PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30:513–521

    PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Metzler KD, Hakkim A et al (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191:677–691

    PubMed  CAS  Google Scholar 

  • Parry MF, Root RK, Metcalf JA et al (1981) Myeloperoxidase deficiency: prevalence and clinical significance. Ann Intern Med 95:293–301

    PubMed  CAS  Google Scholar 

  • Pattison DI, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14:1453–1464

    PubMed  CAS  Google Scholar 

  • Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13:3271–3290

    PubMed  CAS  Google Scholar 

  • Piedrafita FJ, Molander RB, Vansant G et al (1996) An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem 271:14412–14420

    PubMed  CAS  Google Scholar 

  • Pitt AR, Spickett CM (2008) Mass spectrometric analysis of HOCl- and free-radical-induced damage to lipids and proteins. Biochem Soc Trans 36:1077–1082

    PubMed  CAS  Google Scholar 

  • Podrez EA, bu-Soud HM, Hazen SL (2000) Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med 28:1717–1725

    PubMed  CAS  Google Scholar 

  • Porubsky S, Schmid H, Bonrouhi M et al (2004) Influence of native and hypochlorite-modified low-density lipoprotein on gene expression in human proximal tubular epithelium. Am J Pathol 164:2175–2187

    PubMed  CAS  Google Scholar 

  • Prokopowicz ZM, Arce F, Biedron R et al (2010) Hypochlorous acid: a natural adjuvant that facilitates antigen processing, cross-priming, and the induction of adaptive immunity. J Immunol 184:824–835

    PubMed  CAS  Google Scholar 

  • Prutz WA (1996) Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys 332:110–120

    PubMed  CAS  Google Scholar 

  • Rainis T, Maor I, Lanir A et al (2007) Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig Dis Sci 52:526–530

    PubMed  Google Scholar 

  • Ramos CL, Pou S, Britigan BE et al (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267:8307–8312

    PubMed  CAS  Google Scholar 

  • Ramos DR, Garcia MV, Canle LM et al (2008) Myeloperoxidase-catalyzed chlorination: the quest for the active species. J Inorg Biochem 102:1300–1311

    PubMed  CAS  Google Scholar 

  • Reynolds WF, Chang E, Douer D et al (1997) An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Blood 90:2730–2737

    PubMed  CAS  Google Scholar 

  • Reynolds WF, Rhees J, Maciejewski D et al (1999) Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer’s disease. Exp Neurol 155:31–41

    PubMed  CAS  Google Scholar 

  • Reynolds WF, Sermet-Gaudelus I, Gausson V et al (2006) Myeloperoxidase promoter polymorphism −463G is associated with more severe clinical expression of cystic fibrosis pulmonary disease. Mediators Inflamm 2006:36735

    PubMed  Google Scholar 

  • Russell JC, Graham SE, Amy RM et al (1998) Cardioprotective effect of probucol in the atherosclerosis-prone JCR:LA-cp rat. Eur J Pharmacol 350:203–210

    PubMed  CAS  Google Scholar 

  • Rutgers A, Heeringa P, Giesen JE et al (2003a) Neutrophil myeloperoxidase activity and the influence of two single-nucleotide promoter polymorphisms. Br J Haematol 123:536–538

    PubMed  CAS  Google Scholar 

  • Rutgers A, Heeringa P, Tervaert JW (2003b) The role of myeloperoxidase in the pathogenesis of systemic vasculitis. Clin Exp Rheumatol 21(6 Suppl 32):S55–S63

    PubMed  CAS  Google Scholar 

  • Schabath MB, Spitz MR, Hong WK et al (2002) A myeloperoxidase polymorphism associated with reduced risk of lung cancer. Lung Cancer 37:35–40

    PubMed  Google Scholar 

  • Schiller J, Fuchs B, Arnhold J et al (2003) Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, diagnosis and potential therapeutic strategies. Curr Med Chem 10:2123–2145

    PubMed  CAS  Google Scholar 

  • Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    PubMed  CAS  Google Scholar 

  • Segal AW (2006) How superoxide production by neutrophil leukocytes kills microbes. Novartis Found Symp 279:92–98

    PubMed  CAS  Google Scholar 

  • Segal AW, Geisow M, Garcia R et al (1981) The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 290:406–409

    PubMed  CAS  Google Scholar 

  • Senthilmohan R, Kettle AJ (2006) Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Arch Biochem Biophys 445:235–244

    PubMed  CAS  Google Scholar 

  • Shao B, Belaaouaj A, Verlinde CL et al (2005) Methionine sulfoxide and proteolytic cleavage contribute to the inactivation of cathepsin G by hypochlorous acid: an oxidative mechanism for regulation of serine proteinases by myeloperoxidase. J Biol Chem 280:29311–29321

    PubMed  CAS  Google Scholar 

  • Spalteholz H, Panasenko OM, Arnhold J (2006) Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase. Arch Biochem Biophys 445:225–234

    PubMed  CAS  Google Scholar 

  • Staudinger BJ, Oberdoerster MA, Lewis PJ et al (2002) mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Invest 110:1151–1163

    PubMed  CAS  Google Scholar 

  • Sugiyama S, Okada Y, Sukhova GK et al (2001) Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 158:879–891

    PubMed  CAS  Google Scholar 

  • Thomas MJ (1992) Urate causes the human polymorphonuclear leukocyte to secrete superoxide. Free Radic Biol Med 12:89–91

    PubMed  CAS  Google Scholar 

  • van Dalen CJ, Whitehouse MW, Winterbourn CC et al (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 327(Pt 2):487–492

    PubMed  Google Scholar 

  • van der Veen BS, de Winther MPJ, Heeringa P (2009) Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11:2899–2937

    PubMed  Google Scholar 

  • van Leeuwen M, Gijbels MJ, Duijvestijn A et al (2008) Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR−/− mice. Arterioscler Thromb Vasc Biol 28:84–89

    PubMed  Google Scholar 

  • von Vietinghoff S, Ley K (2008) Homeostatic regulation of blood neutrophil counts. J Immunol 181:5183–5188

    Google Scholar 

  • Wang Y, Rosen H, Madtes DK et al (2007) Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation. J Biol Chem 282:31826–31834

    PubMed  CAS  Google Scholar 

  • Wentworth P Jr, McDunn JE, Wentworth AD et al (2002) Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298:2195–2199

    PubMed  CAS  Google Scholar 

  • Winterbourn CC, van den Berg JJ, Roitman E et al (1992) Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Arch Biochem Biophys 296:547–555

    PubMed  CAS  Google Scholar 

  • Winterbourn CC, Hampton MB, Livesey JH et al (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 281:39860–39869

    PubMed  CAS  Google Scholar 

  • Woods AA, Davies MJ (2003) Fragmentation of extracellular matrix by hypochlorous acid. Biochem J 376:219–227

    PubMed  CAS  Google Scholar 

  • Xiao H, Heeringa P, Hu P et al (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr Rafał Biedroń for assistance in the preparation of this manuscript for publication. Zofia Prokopowicz was supported by a MRC studentship. Benjamin Chain is supported by a grant from Ovarian Cancer Action. Janusz Marcinkiewicz is supported by a grant from the Jagiellonian University Medical College (Grant no. K/ZDS/001008 and Grant no. K/PBW/000643).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Marcinkiewicz.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00005-014-0321-y.

About this article

Cite this article

Prokopowicz, Z., Marcinkiewicz, J., Katz, D.R. et al. Neutrophil Myeloperoxidase: Soldier and Statesman. Arch. Immunol. Ther. Exp. 60, 43–54 (2012). https://doi.org/10.1007/s00005-011-0156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-011-0156-8

Keywords

Navigation