Skip to main content

Advertisement

Log in

P2X7 Receptor Signaling Pathway as a Therapeutic Target for Neurodegenerative Diseases

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

A recent study suggested that neuroinflammation plays a major role in the pathogenesis of a number of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Although the precise mechanism is obscure, dysregulation of the signaling transduction pathway in microglia may enhance inflammation, leading to synaptic dysfunction and ultimately to neuronal cell death. The expression and function of the P2X7 receptor (P2X7R), an ATP-gated ion channel abundantly expressed in microglia in the brain, is significantly up-regulated in the postmortem brain of Alzheimer’s disease patients and various neurodegenerative disease animal models. This supports the role of the P2X7R pathway in the progression of neurodegeneration. Blocking P2X7R using brilliant blue G, a P2X7R antagonist that can cross the blood–brain barrier, has been shown to result in the amelioration of neuropathology in various animal models. Taken together, these results raise the possibility that the P2X7R signaling pathway could be a therapeutic target for treating various neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

P2X7R:

P2X7 receptor

Aβ:

Amyloid-β

CNS:

Central nervous system

IL-1β:

Interleukin-1β

PrPSc :

Infectious form of prion protein

HD:

Huntington’s disease

BBG:

Brilliant blue G

References

  • Abbracchio MP, Burnstock G, Boeynaems JM et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  PubMed  Google Scholar 

  • Anderson CM, Nedergaard M (2006) Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 29:257–262

    Article  CAS  PubMed  Google Scholar 

  • Bianco F, Ceruti S, Colombo A et al (2006) A role for P2X7 in microglial proliferation. J Neurochem 99:745–758

    Article  CAS  PubMed  Google Scholar 

  • Borzelleca JF, Depukat K, Hallagan JB (1990) Lifetime toxicity/carcinogenicity studies of FD & C Blue No. 1 (brilliant blue FCF) in rats and mice. Food Chem Toxicol 28:221–234

    Article  CAS  PubMed  Google Scholar 

  • Crozet C, Beranger F, Lehmann S (2008) Cellular pathogenesis in prion diseases. Vet Res 39:44

    Article  PubMed  CAS  Google Scholar 

  • Denlinger LC, Fisette PL, Sommer JA et al (2001) Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide. J Immunol 167:1871–1876

    CAS  PubMed  Google Scholar 

  • Di Virgilio F, Chiozzi P, Falzoni S et al (1998) Cytolytic P2X purinoceptors. Cell Death Differ 5:191–199

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Hernandez M, Diez-Zaera M, Sanchez-Nogueiro J et al (2009) Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB J 23:1893–1906

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Neary JT (2006) P2X(7) receptors: properties and relevance to CNS function. Glia 54:738–746

    Article  PubMed  Google Scholar 

  • Duan S, Anderson CM, Keung EC et al (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    CAS  PubMed  Google Scholar 

  • Ferrari D, Villalba M, Chiozzi P et al (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539

    CAS  PubMed  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S et al (1997a) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S et al (1997b) Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:579–582

    Article  CAS  PubMed  Google Scholar 

  • Ferrari D, Wesselborg S, Bauer MK et al (1997c) Extracellular ATP activates transcription factor NF-κB through the P2Z purinoreceptor by selectively targeting NF-κB p65. J Cell Biol 139:1635–1643

    Article  CAS  PubMed  Google Scholar 

  • Ferrari D, Pizzirani C, Adinolfi E et al (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883

    CAS  PubMed  Google Scholar 

  • Fujita M, Wei J, Nakai M et al (2006) Chaperone and anti-chaperone: two-faced synuclein as stimulator of synaptic evolution. Neuropathology 26:383–392

    Article  PubMed  Google Scholar 

  • Garden GA, Moller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137

    Article  PubMed  Google Scholar 

  • Gendron FP, Chalimoniuk M, Strosznajder J et al (2003) P2X7 nucleotide receptor activation enhances IFNγ-induced type II nitric oxide synthase activity in BV-2 microglial cells. J Neurochem 87:344–352

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Masliah E (1999) α-synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol 9:707–720

    Article  CAS  PubMed  Google Scholar 

  • Hess SM, Fitzhugh OG (1955) Absorption and excretion of certain triphenylmethane colors in rats and dogs. J Pharmacol Exp Ther 114:38–42

    CAS  PubMed  Google Scholar 

  • Iwamaru Y, Takenouchi T, Ogihara K et al (2007) Microglial cell line established from prion protein-overexpressing mice is susceptible to various murine prion strains. J Virol 81:1524–1527

    Article  CAS  PubMed  Google Scholar 

  • Jiang LH (2009) Inhibition of P2X(7) receptors by divalent cations: old action and new insight. Eur Biophys J 38:339–346

    Article  CAS  PubMed  Google Scholar 

  • Jimenez S, Baglietto-Vargas D, Caballero C et al (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661

    Article  CAS  PubMed  Google Scholar 

  • Kataoka A, Tozaki-Saitoh H, Koga Y et al (2009) Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 108:115–125

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Hao AJ, Wu CH et al (2001) Origin of microglia. Microsc Res Tech 54:2–9

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW et al (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  • Matute C, Torre I, Perez-Cerda F et al (2007) P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533

    Article  CAS  PubMed  Google Scholar 

  • McLarnon JG, Ryu JK, Walker DG et al (2006) Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Monif M, Reid CA, Powell KL et al (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29:3781–3791

    Article  CAS  PubMed  Google Scholar 

  • Norenberg W, Illes P (2000) Neuronal P2X receptors: localisation and functional properties. Naunyn Schmiedebergs Arch Pharmacol 362:324–339

    Article  CAS  PubMed  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  • Parvathenani LK, Tertyshnikova S, Greco CR et al (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278:13309–13317

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Cotrina ML, Han X et al (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci USA 106:12489–12493

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1991) Molecular biology of prion diseases. Science 252:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Ryu JK, McLarnon JG (2008) Block of purinergic P2X(7) receptor is neuroprotective in an animal model of Alzheimer’s disease. Neuroreport 19:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Sanz JM, Chiozzi P, Ferrari D et al (2009) Activation of microglia by amyloid β requires P2X7 receptor expression. J Immunol 182:4378–4385

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (1996) Amyloid β-protein and the genetics of Alzheimer’s disease. J Biol Chem 271:18295–18298

    CAS  PubMed  Google Scholar 

  • Sim JA, Young MT, Sung HY et al (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

    Article  CAS  PubMed  Google Scholar 

  • Sugama S, Yang L, Cho BP et al (2003) Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964:288–294

    Article  CAS  PubMed  Google Scholar 

  • Sugama S, Takenouchi T, Cho BP et al (2009) Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 8:277–284

    Article  CAS  PubMed  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E et al (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Hide I, Ido K et al (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24:1–7

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi T, Ogihara K, Sato M et al (2005) Inhibitory effects of U73122 and U73343 on Ca2+ influx and pore formation induced by the activation of P2X7 nucleotide receptors in mouse microglial cell line. Biochim Biophys Acta 1726:177–186

    CAS  PubMed  Google Scholar 

  • Takenouchi T, Iwamaru Y, Imamura M et al (2007a) Prion infection correlates with hypersensitivity of P2X7 nucleotide receptor in a mouse microglial cell line. FEBS Lett 581:3019–3026

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi T, Sato M, Kitani H (2007b) Lysophosphatidylcholine potentiates Ca2+ influx, pore formation and p44/42 MAP kinase phosphorylation mediated by P2X7 receptor activation in mouse microglial cells. J Neurochem 102:1518–1532

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi T, Iwamaru Y, Sugama S et al (2008) Lysophospholipids and ATP mutually suppress maturation and release of IL-1β in mouse microglial cells using a Rho-dependent pathway. J Immunol 180:7827–7839

    CAS  PubMed  Google Scholar 

  • Takenouchi T, Nakai M, Iwamaru Y et al (2009a) The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells. J Immunol 182:2051–2062

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi T, Sugama S, Iwamaru Y et al (2009b) Modulation of the ATP-induced release and processing of IL-1β in microglial cells. Crit Rev Immunol 29:335–345

    CAS  PubMed  Google Scholar 

  • The Huntington’s Disease Collaboratine Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  • Varma H, Cheng R, Voisine C et al (2007) Inhibitors of metabolism rescue cell death in Huntington’s disease models. Proc Natl Acad Sci USA 104:14525–14530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology. This work was also supported by a research grant from the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Hashimoto.

About this article

Cite this article

Takenouchi, T., Sekiyama, K., Sekigawa, A. et al. P2X7 Receptor Signaling Pathway as a Therapeutic Target for Neurodegenerative Diseases. Arch. Immunol. Ther. Exp. 58, 91–96 (2010). https://doi.org/10.1007/s00005-010-0069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0069-y

Keywords

Navigation