Skip to main content

Advertisement

Log in

Role of ocular pigment epithelial cells in immune privilege

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The ocular microenvironment is both immunosuppressive and anti-inflammatory in nature. Pigment epithelial (PE) cells isolated from the eye possess the ability to suppress the T cell receptor-dependent activation of T cells and the induction of regulatory T cells in vitro. This property is dependent on the cells’ capacity to produce cell-surface and soluble inhibitory molecules, for example CD86 (B7-2), transforming growth factor (TGF)-β, thrombospondin-1, programmed cell death 1 ligand 1 (PD-L1/B7-H1), and cytotoxic T lymphocyte-associated antigen 2α. Cultured ocular PE cells from the iris, ciliary body, and retina can individually suppress T-cell activation via mechanisms that partially overlap. Moreover, PE-derived regulatory T cells acquire functions that play a role in establishing immune regulation in the eye. Multiple strategies are employed within the eye to control immune-mediated inflammation. This phenomenon is known as immune privilege and is instrumental in helping to prevent extensive damage to bystander cells that would otherwise lead to blindness. This review focuses on the immunosuppressive property and role of ocular PE cells in immune privileged sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBPE:

ciliary body pigment epithelium

CTLA-2α:

cytotoxic T lymphocyte-associated antigen 2α

IPE:

iris pigment epithelium

PD-L1:

programmed cell death 1 ligand 1

PE:

pigment epithelium

Treg cells:

T regulatory cells

TSP-1:

thrombospondin-1

RPE:

retina pigment epithelium

References

  • Brunet JF, Denizot F, Luciani MF et al (1987) A new member of the immunoglobulin superfamily – CTLA-4. Nature 328: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Brunet JF, Dosseto M, Denizot F et al (1986) The inducible cytotoxic T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature 322: 268–271

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Hubner A, Beermann F (2001) Increased transgene expression by the mouse tyrosinase enhancer is restricted to neural crest-derived pigment cells. Genesis 29: 180–187

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jin W, Wahl SM (1998) Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4+ T cells. J Exp Med 188: 1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Zhu G, Tamada K et al (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5: 1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192: 1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Futagami Y, Sugita S, Vega J et al (2007) Role of thrombospondin-1 in T cell response to ocular pigment epithelial cells. J Immunol 178: 6994–7005

    PubMed  CAS  Google Scholar 

  • Granstein RD, Staszewski R, Knisely TL et al (1990) Aqueous humor contains transforming growth factor-beta and a small (less than 3500 daltons) inhibitor of thymocyte proliferation. J Immunol 144: 3021–3027

    PubMed  CAS  Google Scholar 

  • Griffith TS, Brunner T, Fletcher SM et al (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270: 1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Griffith TS, Yu X, Herndon JM et al (1996) CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5: 7–16

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Panjwani N, Cao Z et al (2003) Participation of pigment epithelium in ocular immune privilege. 3. Epithelia cultured from iris, ciliary body, and retina suppress T-cell activation by partially non-overlapping mechanisms. Ocul Immunol Inflamm 11: 91–105

    Article  PubMed  CAS  Google Scholar 

  • Kurata M, Hirata M, Watabe S et al (2003) Expression, purification, and inhibitory activities of mouse cytotoxic T-lymphocyte antigen-2alpha. Protein Expr Purif 32: 119–125

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yio XY, Mayer L (1995) Human intestinal epithelial cell-induced CD8+ T cell activation is mediated through CD8 and the activation of CD8-associated p56lck. J Exp Med 182: 1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Lucas PJ, Kim SJ, Melby SJ et al (2000) Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor beta II receptor. J Exp Med 191: 1187–1196

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194: 629–644

    Article  PubMed  CAS  Google Scholar 

  • Niederkorn JY (2002) Immune privilege in the anterior chamber of the eye. Crit Rev Immunol 22: 13–46

    PubMed  CAS  Google Scholar 

  • Niederkorn JY, Wang S (2005) Immune privilege of the eye and fetus: parallel universes? Transplantation 80: 1139–1144

    Article  PubMed  Google Scholar 

  • Ohta K, Wiggert B, Yamagami S et al (2000) Analysis of immunomodulatory activities of aqueous humor from eyes of mice with experimental autoimmune uveitis. J Immunol 164: 1185–1192

    PubMed  CAS  Google Scholar 

  • Pasquale LR, Dorman-Pease ME, Lutty GA et al (1993) Immunolocalization of TGF-beta 1, TGF-beta 2, and TGF-beta 3 in the anterior segment of the human eye. Invest Ophthalmol Vis Sci 34: 23–30

    PubMed  CAS  Google Scholar 

  • Rothermel A, Layer PG (2001) Photoreceptor plasticity in reaggregates of embryonic chick retina: rods depend on proximal cones and on tissue organization. Eur J Neurosci 13: 949–958

    Article  PubMed  CAS  Google Scholar 

  • Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3: 879–889

    Article  PubMed  CAS  Google Scholar 

  • Streilein JW, Stein-Streilein J (2000) Does innate immune privilege exist. J Leukoc Biol 67: 479–487

    PubMed  CAS  Google Scholar 

  • Stuart PM, Griffith TS, Usui N et al (1997) CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99: 396–402

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, Futagami Y, Horie S et al (2007a) Murine ciliary body pigment epithelial cells inhibit activation of T cells. Nippon Ganka Gakkai Zasshi 111: 598–605

    PubMed  CAS  Google Scholar 

  • Sugita S, Futagami Y, Horie S et al (2007b) Transforming growth factor beta-producing Foxp3(+)CD8(+)CD25(+) T cells induced by iris pigment epithelial cells display regulatory phenotype and acquire regulatory functions. Exp Eye Res 85: 626–636

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, Futagami Y, Smith SB et al (2006a) Retinal and ciliary body pigment epithelium suppress activation of T lymphocytes via transforming growth factor beta. Exp Eye Res 83: 1459–1471

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, Horie S, Nakamura O et al (2008) Retinal pigment epithelium-derived cytotoxic T lymphocyte antigen-2α induces TGFβ-producing T regulatory cells. J Immunol 181: 7525–7536

    PubMed  CAS  Google Scholar 

  • Sugita S, Keino H, Futagami Y et al (2006b) B7+ iris pigment epithelial cells convert T cells into CTLA-4+, B7-expressing CD8+ regulatory T cells. Invest Ophthalmol Vis Sci 47: 5376–5384

    Article  PubMed  Google Scholar 

  • Sugita S, Ng TF, Lucas PJ et al (2006) B7+ iris pigment epithelium induce CD8+ T regulatory cells; both suppress CTLA-4+ T cells. J Immunol 176: 118–127

    PubMed  CAS  Google Scholar 

  • Sugita S, Ng TF, Schwartzkopff J et al (2004) CTLA-4+CD8+ T cells that encounter B7-2+ iris pigment epithelial cells express their own B7-2 to achieve global suppression of T cell activation. J Immunol 172: 4184–4194

    PubMed  CAS  Google Scholar 

  • Sugita S, Streilein JW (2003) Iris pigment epithelium expressing CD86 (B7-2) directly suppresses T cell activation in vitro via binding to cytotoxic T lymphocyte-associated antigen 4. J Exp Med 198: 161–171

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, Usui Y, Horie S et al (2009) T cell suppression by programmed cell death 1 ligand 1 on retinal pigment epithelium during inflammatory conditions. Invest Ophthalmol Vis Sci 50: 2862–2870

    Article  PubMed  Google Scholar 

  • Taylor AW (1999) Ocular immunosuppressive microenvironment. Chem Immunol 73: 72–89

    Article  PubMed  CAS  Google Scholar 

  • Taylor AW (2007) Ocular immunosuppressive microenvironment. Chem Immunol Allergy 92: 71–85

    Article  PubMed  CAS  Google Scholar 

  • Taylor AW, Alard P, Yee DG et al (1997) Aqueous humor induces transforming growth factor-beta (TGF-beta)-producing regulatory T-cells. Curr Eye Res 16: 900–908

    Article  PubMed  CAS  Google Scholar 

  • Usui Y, Okunuki Y, Hattori T et al (2008) Functional expression of B7H1 on retinal pigment epithelial cells. Exp Eye Res 86: 52–59

    Article  PubMed  CAS  Google Scholar 

  • Wenkel H, Streilein JW (2000) Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Invest Ophthalmol Vis Sci 41: 3467–3473

    PubMed  CAS  Google Scholar 

  • Yoshida M, Kezuka T, Streilein JW (2000) Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 2. Generation of TGF-beta-producing regulatory T cells. Invest Ophthalmol Vis Sci 41: 3862–3870

    PubMed  CAS  Google Scholar 

  • Yoshida M, Takeuchi M, Streilein JW (2000) Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 1. Inhibition of T-cell activation in vitro by direct cell-to-cell contact. Invest Ophthalmol Vis Sci 41: 811–821

    PubMed  CAS  Google Scholar 

  • Zamiri P, Masli S, Streilein JW et al (2006) Pigment epithelial growth factor suppresses inflammation by modulating macrophage activation. Invest Ophthalmol Vis Sci 47: 3912–3918

    Article  PubMed  Google Scholar 

  • Zamiri P, Sugita S, Streilein JW (2007) Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chem Immunol Allergy 92: 86–93

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunao Sugita MD, Ph.D..

About this article

Cite this article

Sugita, S. Role of ocular pigment epithelial cells in immune privilege. Arch. Immunol. Ther. Exp. 57, 263–268 (2009). https://doi.org/10.1007/s00005-009-0030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0030-0

Keywords

Navigation