Skip to main content
Log in

Upper bounds for edge-antipodal and subequilateral polytopes

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A polytope in a finite-dimensional normed space is subequilateral if the length in the norm of each of its edges equals its diameter. Subequilateral polytopes occur in the study of two unrelated subjects: surface energy minimizing cones and edge-antipodal polytopes. We show that the number of vertices of a subequilateral polytope in any d-dimensional normed space is bounded above by (d / 2 + 1)d for any d ≥ 2. The same upper bound then follows for the number of vertices of the edge-antipodal polytopes introduced by I. Talata [19]. This is a constructive improvement to the result of A. Pór (to appear) that for each dimension d there exists an upper bound f(d) for the number of vertices of an edge-antipodal d-polytopes. We also show that in d-dimensional Euclidean space the only subequilateral polytopes are equilateral simplices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barvinok, A Course in Convexity, American Mathematical Society, Providence, RI, 2002.

    MATH  Google Scholar 

  2. K. Bezdek, T. Bisztriczky and K. Böröczky, Edge-antipodal 3-polytopes, Discrete and Computational Geometry (J. E. Goodman, J. Pach, and E. Welzl, eds.), MSRI Special Programs, Cambridge University Press, 2005.

  3. T. Bisztriczky and K. Böröczky, On antipodal 3-polytopes, Rev. Roumaine Math. Pures Appl., 50 (2005), 477–481.

    MATH  MathSciNet  Google Scholar 

  4. H. Busemann, Intrinsic area, Ann. Math., 48 (1947), 234–267.

    Article  MathSciNet  Google Scholar 

  5. Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Springer-Verlag, Heidelberg, 1988.

    MATH  Google Scholar 

  6. B. Csikós, Edge-antipodal convex polytopes — a proof of Talata’s conjecture, Discrete Geometry, Monogr. Textbooks Pure Appl. Math., vol. 253, Dekker, New York, 2003, 201–205.

    Google Scholar 

  7. L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee, Math. Z., 79 (1962), 95–99.

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Füredi, J. C. Lagarias and F. Morgan, Singularities of minimal surfaces and networks and related extremal problems in Minkowski space, Discrete and computational geometry (New Brunswick, NJ, 1989/1990), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 6, Amer. Math. Soc., Providence, RI, 1991, 95–109.

  9. B. Grunbaum, Convex polytopes, 2nd ed., Springer, New York, 2003.

    Google Scholar 

  10. V. Klee, Unsolved problems in intuitive geometry, Mimeographed notes, Seattle, 1960.

    Google Scholar 

  11. G. Lawlor and F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math., 166 (1994), 55–83.

    MATH  MathSciNet  Google Scholar 

  12. H. Martini and V. Soltan, Antipodality properties of finite sets in Euclidean space, Discrete Math., 290 (2005), 221–228.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. S. Mel’nikov, Dependence of volume and diameter of sets in an n-dimensional Banach space (in Russian), Uspehi Mat. Nauk, 18 (1963), 165–170.

    MATH  Google Scholar 

  14. C. M. Petty, Equilateral sets in Minkowski spaces, Proc. Amer. Math. Soc., 29 (1971), 369–374.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Pór, On e-antipodal polytopes, submitted.

  16. P. S. Soltan, Analogues of regular simplexes in normed spaces (in Russian), Dokl. Akad. Nauk SSSR, 222 (1975), 1303–1305. English translation: Soviet Math. Dokl., 16 (1975), 787–789.

    MathSciNet  Google Scholar 

  17. K. J. Swanepoel, Cardinalities of k-distance sets in Minkowski spaces, Discrete Math., 197/198 (1999), 759–767.

    MathSciNet  Google Scholar 

  18. A. C. Thompson, Minkowski Geometry, Encyclopedia of Mathematics and its Applications, vol. 63, Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  19. I. Talata, On extensive subsets of convex bodies, Period. Math. Hungar., 38 (1999), 231–246.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Imre Bárány

This material is based upon work supported by the South African National Research Foundation under Grant number 2053752.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanepoel, K.J. Upper bounds for edge-antipodal and subequilateral polytopes. Period Math Hung 54, 99–106 (2007). https://doi.org/10.1007/s-10998-007-1099-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s-10998-007-1099-0

Mathematics subject classification number

Key words and phrases

Navigation