Skip to main content
Log in

Hydrothermal Treatment Management of High Alumina Waste for Synthesis of Nanomaterials with New Morphologies

  • High-Performance Ceramics
  • Published:
Interceram - International Ceramic Review

Abstract

Kiln rollers’ grind waste powders (KRGW) collected from a ceramic factory are considered a high alumina waste consisting of several phases. The KRGW was treated hydrothermally at 150°C for different time periods. The hydrothermal method was found to be a very effective method for the management of KRGW in synthesizing new nanomaterials with new morphologies. Raw and treated kiln rollers’ grind waste was characterized using XRF, XRD, TEM, BET, DTA, and TGA. TEM of the raw KRGW showed a lamellar crystal structure with different shapes and morphologies. XRD displayed hour different phases with a high percentage of mullite and corundum due to the high levels of Al and Si in the raw waste. Treated KRGW exhibited nano-sieves with different morphologies consisting of two predominant phases, namely calcium aluminum oxide and corundum. Results indicated that the hydrothermal process assists phase changes, crystal size, and morphology of the KRGW. This modification is expected to improve over all properties of KRGW for efficient practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zimbili, O., Salim, W., Ndambuki, M.: A review on the usage of ceramic wastes in concrete production. Internat. J. of Civil, Architectural, Structural and Construction Engineering 8 (2014) [1] 91–95

    Google Scholar 

  2. Torgal, F.P., Jalali, S.: Reusing ceramic wastes in concrete. Construction and Building Materials 24 (2010) 832–838

    Article  Google Scholar 

  3. Tabak, Y., Kara, M., Günay, E., Yildirim, S.T., Yilmaz, Ş.: Ceramic tile waste as a waste management solution for concrete. 3rd Internat. Conference on Industrial and Hazardous Waste Management (CRETE) (2012) 1–8

  4. Medina, C., Sánchez, de Rojasb, M.I., Frías, M.: Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement and Concrete Composites 34 (2012) [1] 48–54

    Article  CAS  Google Scholar 

  5. Corominas, A., Etxeberria, M.: Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates. Construction and Building Materials 68 (2014) 618–626

    Article  Google Scholar 

  6. Halicka, A., Ogrodnik, P., Zegardlo, B.: Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials 48 (2013) 295–305

    Article  Google Scholar 

  7. Elçi, H.: Utilization of crushed floor and wall tile wastes as aggregate in concrete production. J. of Cleaner Production 112 (2016) [1] 742–752

    Article  Google Scholar 

  8. Ji, R., Zhang, Z., He, Y., Liu, L., Wang, X.: Synthesis, characterization and modeling of new building insulation material using ceramic polishing waste residue. Construction and Building Materials 85 (2015) 119–126

    Article  Google Scholar 

  9. Penteado, C., de Carvalho, E., Lintz, R.: Reusing ceramic tile polishing waste in paving block manufacturing. J. of Cleaner Production 112 (2016) [1] 514–520

    Article  Google Scholar 

  10. Roushdy, M.H., Amin, Sh.K., Ahmed, M.M., Abadir, M.F: Reuse of the product obtained on grinding kiln rollers in the manufacture of ceramic wall tiles. Ceramics — Technical 38 (2014) 60–66

    Google Scholar 

  11. Gemmi, M., Merlini, M., Cruciani, G., Artioli, G.: Non-ideality and defectivity of the åkermanite-gehlenite solid solution: An X-ray diffraction and TEM study.Amer. Mineralogist 92 (2007) 1685–1694. DOI: 10.2138/am.2007.2380

    Article  CAS  Google Scholar 

  12. Trindade, M.J., Dias, M.I., Coroado, J., Rocha, F.: Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science 42 (2009) 345–355. DOI:10.1016/j.clay.2008.02.008

    Article  CAS  Google Scholar 

  13. Molenaar, J.M.M., Katgerman, L., Kool, W.H., Smeulders, R.J.: On the formation of the stircast structure. J. of Mater. Sci. 21 (1986) 389–394

    Article  CAS  Google Scholar 

  14. Schulze, T.P., Davis, S.H.: Shear stabilization of morphological instability during directional solidification. J. of Crystal Growth 149 (1995) 253–265

    Article  CAS  Google Scholar 

  15. Aras A.: The change of phase composition in kaolinite and illite-rich clay-based ceramic bodies. Applied Clay Sci. 24 (2004) [3–4] 257–269

    Article  CAS  Google Scholar 

  16. Louisnathan, S.J.: Refinement of the crystal structure of a natural Gehlenite Ca2Al(AlSi)2O7. Canadian Mineral 10 (1971) 822–837

    CAS  Google Scholar 

  17. Lo, C.L., Duh, J.G., Chiou, B.S., Lee, W.H.: Microstructure characterization for Anorthite composite glass with nucleating agent of TiO2 under non-isothermal crystallization. Mater. Res. Bull. 37 (2002) 1949–1960

    Article  CAS  Google Scholar 

  18. Riccardi, M.P., Messiga, B., Duminuco, P.: An approach to the dynamics of clay firing. Applied Clay Sci. 15 (1999) [3–4] 393–409

    Article  CAS  Google Scholar 

  19. Sonuparlak, B., Sarikaya, M., Aksay, I.A.: Spinel phase formation during the 980°C exothermic reaction in the Kaolinite-to-Mullite reaction series. J. of the Amer. Ceram. Soc. 70 (1987) [11] 837–842

    Article  CAS  Google Scholar 

  20. Seidel, H., Csepregi, L., Heuberger, A., Baumgartel, H.: Anisotropic etching or crystalline silicon in alkaline solutions, I. orientation dependence and behavior of passivation layers. J. of the Electrochemical Soc. 137 (1990) [11] 3612–3626

    Article  CAS  Google Scholar 

  21. Dong, J., Huang, S.H.: Low-reflective surface texturing for large area multi-crystalline silicon using NaOH-NaCl solution. Surface Engineering and Applied Electrochemistry 50 (2014) [1] 25–29

    Article  CAS  Google Scholar 

  22. Onutai, S., Wasanapiarnpong, T., Jiemsirilers, S., Wada, S., Thavorniti, P.: Effect of sodium hydroxide solution on the properties of geopolymer based on fly ash and aluminium waste blend. Suranaree J. of Sci. & Technology 21 (2014) [1] 9–14

    Google Scholar 

  23. Koros, W.J., Ma, Y.H., Shimidzu, T.: Terminology for membranes and membrane processes. Pure and Applied Chemistry 68 (1996) [7] 1479–1489

    Article  CAS  Google Scholar 

  24. Jiang, Z., Yang, J., Ma H., Wang L., Ma X.: Reaction behavior of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process. Transactions of Nonferrous Metals Soc. of China 25 (2015) [6] 2065–2072. DOI: 10.1016/S1003-6326(15)63816-X

    Article  CAS  Google Scholar 

  25. Brunaur, S., Deming, L.S., Deming, W.E., Teller, E.: On a theory of the Van der Waals adsorption of gases. J. of the Amer. Chemical Society 62 (1940) [7] 1723–1732

    Article  Google Scholar 

  26. Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area, and Porosity. 2nd Edition, Academic Press INC, London, ISBN 0-12-300956-1 (1982)

    Google Scholar 

  27. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R., Rouquerol, J., Siemienwska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57 (1985) [4] 603–619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Abo-Almaged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Almaged, H.H., Moustafa, A.F., Ismail, A.M. et al. Hydrothermal Treatment Management of High Alumina Waste for Synthesis of Nanomaterials with New Morphologies. Interceram. - Int. Ceram. Rev. 66, 172–179 (2017). https://doi.org/10.1007/BF03401212

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401212

Keywords

Navigation