Skip to main content
Log in

Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

In a previous study we were the first to describe a negative correlation between circulating ghrelin concentrations and androgen levels in human plasma, suggesting an interaction between ghrelin and the endocrine regulation of reproductive physiology. We now investigated a potential direct regulatory influence of circulating androgens on plasma ghrelin levels. Fourteen obese women with polycystic ovary syndrome (PCOS) on a hypocaloric diet were randomly assigned to treatment groups (open-labeled design), receiving either placebo (no.= 7) or the antiandrogen flutamide (no.=7) for 6 months. Anthropometry, visceral (VAT) and subcutaneous (SAT) adipose tissue (quantified by computerized tomography), plasma hormone levels, insulin sensitivity indexes (Quantitative Insulin-Sensitivity Check Index-QUICKI) and Homeostatic Model Assessment applied to the oral glucose tolerance test (HOMAOGTT) were evaluated at baseline and at the end of the study. Body weight decreased and insulin resistance indexes improved in both groups. A tendency toward a greater loss of VAT was observed in the flutamide group. Only in the flutamide group was a significant reduction of androgens levels observed. Plasma ghrelin levels significantly increased following treatment with flutamide, while ghrelin remained unchanged in the placebo group. We observed a negative correlation between changes of ghrelin levels and changes of androgen plasma concentration in the flutamide-treated group. In the same group a positive correlation was found between plasma ghrelin changes and insulin sensitivity as expressed by HOMAOGTT. Analysis in a multiple regression model, however, showed that plasma ghrelin changes were mainly due to changes of androgen levels rather than improved insulin sensitivity. We, therefore, conclude that androgens are independent modulators of circulating ghrelin concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402: 656–60.

    Article  PubMed  CAS  Google Scholar 

  2. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996, 273: 974–7.

    Article  PubMed  CAS  Google Scholar 

  3. Muccioli G, Tschop M, Papotti M, Deghenghi R, Heiman M, Ghigo E. Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol 2002, 440: 235–54.

    Article  PubMed  CAS  Google Scholar 

  4. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000, 407: 908–13.

    Article  PubMed  CAS  Google Scholar 

  5. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature 2001, 409: 194–8.

    Article  PubMed  CAS  Google Scholar 

  6. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001, 86: 5992–5.

    Article  PubMed  CAS  Google Scholar 

  7. Arvat E, Di Vito L, Broglio F, et al. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. J Endocrinol Invest 2000, 23: 493–5.

    Article  PubMed  CAS  Google Scholar 

  8. Papotti M, Ghe C, Cassoni P, et al. Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab 2000, 85: 3803–7.

    PubMed  CAS  Google Scholar 

  9. Gaytán F, Barreiro ML, Chopin LK, et al. Immunolocalization of ghrelin and its functional receptor, the Type 1a GH-secretagogue receptor, in the cyclic human ovary. J Clin Endocrinol Metab 2003, 88: 879–87.

    Article  PubMed  CAS  Google Scholar 

  10. Tena-Sempere M, Barreiro ML, Gonzalez LC, et al. Novel expression and functional role of ghrelin in rat testis. Endocrinology 2002, 143: 717–25.

    Article  PubMed  CAS  Google Scholar 

  11. Barreiro ML, Gaytán F, Caminos JE, et al. Cellular location and hormonal regulation of ghrelin expression in rat testis. Biol Reprod 2002, 67: 1768–76.

    Article  PubMed  CAS  Google Scholar 

  12. Pagotto U, Gambineri A, Vicennati V, Heiman ML, Tschöp M, Pasquali R. Plasma ghrelin, obesity, and the polycystic ovary syndrome: correlation with insulin resistance and androgen levels. J Clin Endocrinol Metab 2002, 87: 5625–9.

    Article  PubMed  CAS  Google Scholar 

  13. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2000, 23 (Suppl 1): S4–19.

    Google Scholar 

  14. Orsini LP, Venturoli S, Lorusso R, Pluchinotta V, Paradisi R, Bovicelli L. Ultrasonic findings in polycystic ovarian disease. Fertil Steril 1985, 43: 709–14.

    PubMed  CAS  Google Scholar 

  15. Report of a WHO Consultation on Obesity. 1997 Obesity. Preventing and managing the global epidemic. Geneva: WHO/NUT/NCD 98.1.

  16. Vicennati V, Gambineri A, Calzoni F, et al. Serum leptin in obese women with polycystic ovary syndrome is correlated with body weight and fat distribution but not with androgen and insulin levels. Metabolism 1998, 47: 988–92.

    Article  PubMed  CAS  Google Scholar 

  17. Garrow JS. Obesity and related diseases. Edinburgh: Churchill Livingstone 1988.

    Google Scholar 

  18. Pasquali R, Gambineri A, Biscotti D, et al. Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome J Clin Endocrinol Metab 2000, 85: 2767–74.

    Article  PubMed  CAS  Google Scholar 

  19. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 1999, 84: 3666–72.

    Article  PubMed  CAS  Google Scholar 

  20. Mather KJ, Hunt AE, Steinberg HO, et al. Repeatibility characteristics of simple indices of insulin resistance: implications for research applications. J Clin Endocrinol Metab 2001, 86: 5457–64.

    Article  PubMed  CAS  Google Scholar 

  21. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing. Diabetes Care 1999, 22: 1462–70.

    Article  PubMed  CAS  Google Scholar 

  22. Tschöp M, Weyer C, Tataranni AP, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decresed in human obesity. Diabetes 2001, 50: 707–9.

    Article  PubMed  Google Scholar 

  23. Otto B, Cuntz U, Fruehauf E, et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 2001, 145: 669–73.

    Article  PubMed  CAS  Google Scholar 

  24. Schöfl C, Horn R, Schill T, Schlösser HW, Müller MJ, Brabant G. Circulating ghrelin levels in patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2002, 87: 4607–10.

    Article  PubMed  CAS  Google Scholar 

  25. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997, 18: 774–800.

    PubMed  CAS  Google Scholar 

  26. Poretsky L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant state. Endocr Rev 1991, 12: 3–13.

    Article  PubMed  CAS  Google Scholar 

  27. Gambineri A, Pagotto U, Pelusi C, Vicennati V, Pasquali R. Obesity and the polycystic ovary syndrome. Int J Obes 2002, 26: 883–96.

    Article  CAS  Google Scholar 

  28. Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 2002, 87: 240–4.

    Article  PubMed  CAS  Google Scholar 

  29. Ayub M, Levell MJ. Inhibition of rat testicular 17α-hydroxylase and 17,20-lyase activities by anti-androgens (flutamide, hydroxyflutamide, RU 23908, cyproterone acetate) in vitro. J Steroid Biochem 1987, 28: 43–50.

    Article  PubMed  CAS  Google Scholar 

  30. Orio Jr F, Lucidi P, Palomba S, et al. Circulating ghrelin concentrations in the polycystic ovary sindrome J Clin Endocrinol Metab 2003, 88: 942–5.

    Article  PubMed  CAS  Google Scholar 

  31. Haqq AM, Farooqi IS, O’Rahilly S, Stadler DD, Rosenfeld RG, Pratt KL, LaFranchi SH, Purnell JQ. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi Syndrome. J Clin Endocrinol Metab 2003, 88: 174–8.

    Article  PubMed  CAS  Google Scholar 

  32. Furuta M, Funabashi T, Kimura F. Intracerebroventricular administration of ghrelin rapidly suppresses pulsatile luteinizing hormone secretion in ovariectomized rats. Biochem Biophys Res Comm 2001, 288: 780–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pasquali MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambineri, A., Pagotto, U., Tschöp, M. et al. Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome. J Endocrinol Invest 26, 629–634 (2003). https://doi.org/10.1007/BF03347020

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347020

Keywords

Navigation