Skip to main content
Log in

Conceptual change and anomalous data: A case study in the domain of natural sciences

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

Cognitive conflict has been proposed as a strategy to promote conceptual change. The history and philosophy of science have shown the importance of anomalous data to change scientific theories and to the progress of science. Often, scientists use anomalous data to develop new interpretations that lead to new conceptualizations and finally, to a deep conceptual change. To be aware of contradiction seems to be a first step in the process of conceptual change. A study to explore novice students responses to anomalous data has been carried out. Sixty nine ninth graders, fifty seven eleventh graders and sixty three twelfth graders participated in the study. A paper and pencil task about the origin of life on the Earth was designed. Subjects were divided into two conditions. In condition “A” only anomalous data were presented to the subjects. In condition “A+B”, both anomalous and confirmatory data were presented.

Results indicated that younger students were less aware of contradiction than older students when both anomalous and confirmatory data were presented. However, no differences have been found among them when just anomalous data were presented (condition A). Twelfth graders were aware of contradiction in both conditions. Some students’ epistemological beliefs influenced their response to anomalous data. Although no conceptual change (weak or strong restructuring) was achieved, as it could be predicted by the low domain-specific knowledge of the subjects and the complexity of the topic, presenting anomalous data facilitated the achievement of the first steps of the conceptual change process.

Résumé

Le conflit cognitif a été proposé comme une stratégie pour favoriser le changement. L’histoire et la philosophie des sciences ont montré que les données non conformes à la théorie sont source de progrès scientifique et qu’elles jouent un rôle important dans l’évolution et le changement des théories. Les scientifiques s’appuient souvent sur des donnés non conformes pour développer de nouvelles interprétations qui conduisent à de nouvelles conceptualisations et finalement, à un profond changement conceptuel. La prise de conscience de contradictions semble bien constituer une première étape dans le processus de changement conceptuel. Nous avons donc mis en place une recherche visant l’exploration des réponses d’élèves débutants à des donnés non conformes. L’étude a été conduite avec 69 élèves de neuvième année, 57 élèves de 11ème année et 63 élèves de 12ème année auquels on a proposé une tâche papier-crayon à propos de l’origine de la vie sur la terre. Les sujets ont été répartis dans deux conditions: dans la condition dite “A” les données présentées aux sujets étaient toutes non conformes; dans la condition dite “A+B” les sujets étaient disposaient à la fois de données non conformes et confirmées.

Les résultats montrent que les élèves jeunes sont moins conscients des contradictions que les élèves âgés quand les données non conformes et confirmées (“A+B”) sont présentées simultanément. Mais aucune différence n’a été constatée entre les plus jeunes et les plus âgés dans dans la condition ne comportant que les données non conformes (“A”). Les élèves les plus âgés (12ème année) se sont montrés conscients des contradictions dans les deux conditions. Des croyances épistémologique influencent les étudiants dans leurs réponses aux données anormales. Bien qu’aucune changement de conception (qu’il s’agisse de faible ou forte restructuration) ne soit en place, comme on pouvait le prédire du fait des faibles connaissances spécifique des sujets et de la complexité du domaine, la présentation de données non conformes a facilité la réalisation de premiers pas dans le processus de changement de conceptualisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baillo, A., & Carretero, M. (1996). Desarrollo del razonamiento y cambio conceptual en la comprensión de la flotación [Development of reasoning and conceptual change in floatation understanding]. In M. Carretero (Ed.),Construir y enseñar: Las Ciencias Experimentales (pp. 77–106). Buenos Aires: Aique.

    Google Scholar 

  • Bernstein, J. (1996). Il recalcitrante padre dei buchi neri.Le Scienze, edizione italiana di Scientific American, 336, 42–47.

    Google Scholar 

  • Burbules, N.C., & Linn, M.C. (1988). Response to contradiction: scientific reasoning during adolescence.Journal of Educational Psychology, 80, 67–75.

    Article  Google Scholar 

  • Carey, S. (1985).Conceptual change in childhood. Cambridge, MA: MIT Press.

    Google Scholar 

  • Carey, S. (1991). Knowledge acquisition: Enrichment or conceptual change. In S. Carey & R. Gelman (Eds.),The epigenesis of mind (pp. 257–291). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Chaiklin (1985).Stability of conceptions in novice physical science reasoning. Paper presented at the annual meeting of the American Educational Research Association, Chicago.

  • Chalmers, A.F. (1982).What is this thing called science? Queensland: University of Queensland Press.

    Google Scholar 

  • Champagne, A.B., Gunstone, R.F., & Klopfer, L.E. (1985). Instructional consequences of students’ knowledge about physical phenomena. In L.H.T. West & A.L. Pines (Eds.),Cognitive structure and conceptual change (pp. 163–187). Orlando, FL: Academic Press.

    Google Scholar 

  • Chi, M.T.H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.),Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129–160). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Chinn, C.A., & Brewer, W.F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science education.Review of Educational Research, 63, 1–49.

    Google Scholar 

  • Dagher, Z.R. (1994). Does the use of analogies contribute to conceptual change?Science Education, 78, 601–614.

    Article  Google Scholar 

  • Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the “cognitive conflict” strategy for conceptual change — Some implications, difficulties and problems.Science Education, 74, 555–569.

    Article  Google Scholar 

  • Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R.J. Sternberg & J.E. Davidson (Eds.),The nature of insight (pp. 365–395). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Dykstra, D. (1992). Studying conceptual change: Constructing new understandings. In R. Duit, F. Goldberg, & H. Niedderer (Eds.),Research in physics learning: Theoretical issues and empirical studies (pp. 40–58). Kiel, Germany: Institute of Science Education.

    Google Scholar 

  • Eylon, B., & Linn, M.C. (1988). Learning and Instruction: An examination of four research perspectives in science education.Review of Educational Research, 58, 251–301.

    Google Scholar 

  • Hewson, P., & Hewson, M. (1992). The status of student conceptions. In R. Duit, F. Goldberg, & H. Niedderer (Eds.),Research in physics learning: theoretical issues and empirical studies (pp. 59–73). Kiel, Germany: Institute of Science Education.

    Google Scholar 

  • Kuhn, T.S. (1970).The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Lawson, A.E. (1985). A review of research on formal reasoning and science teaching.Journal of Research in Science Education, 22, 569–617.

    Google Scholar 

  • Levin, I., Siegler, R.S., Druyan, S., & Gardosh, R. (1990). Everyday and curriculum-based physics concepts: When does short term training bring change where years of schooling have failed to do so?British Journal of Developmental Psychology, 8, 269–279.

    Google Scholar 

  • Nussbaum, J. (1989). Classroom conceptual change: Philosophical perspectives.International Journal of Science Education, 11, 530–540.

    Article  Google Scholar 

  • Piaget, J. (1975).L’èquilibration des structures cognitives. Problème central du dèveloppement. Paris: Presses Universitaires de France.

    Google Scholar 

  • Popper, K.R. (1968).The logic of scientific discovery. London: Hutchinson.

    Google Scholar 

  • Popper, K.R. (1969).Conjectures and refutations. London: Routledge & Kegan Paul.

    Google Scholar 

  • Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accomodation of a scientific conception: Toward a theory of conceptual change.Science Education, 66, 211–227.

    Article  Google Scholar 

  • Pulos, S., de Benedictis, T., Linn, M.C., Sullivan, P., & Clement, C. (1982). Modification of gender differences in the understanding of displaced volume.Journal of Early Adolescence, 2, 61–74.

    Article  Google Scholar 

  • Stewart, J. (1985). Cognitive science and science education.European Journal of Science Education, 7, 1–17.

    Google Scholar 

  • Thagard, P. (1992).The structure of conceptual revolutions. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change.Learning and Instruction, 4, 45–70

    Article  Google Scholar 

  • Weisberg, R. (1986).Creativity: genius and other myths. New York: W.H. Freeman.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limón, M., Carretero, M. Conceptual change and anomalous data: A case study in the domain of natural sciences. Eur J Psychol Educ 12, 213–230 (1997). https://doi.org/10.1007/BF03173085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03173085

Key Words

Navigation