Skip to main content
Log in

Taphonomy in the light of intrinsic shell properties and life habits: Marine bivalves from the Eemian of northern Russia

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

A taphonomic analysis of the bivalvesArctica islandica (Arcticidae),Astarte borealis (Astartidae),Mytilus edulis (Mytilidae), andSpisula elliptica (Mactridae) from shallow-marine last interglacial Sediments exposed along the Pyoza river, Arkhangelsk region, shows that they differ in preservation, probably because of differences in shell shape, shell structures, and life habits. The Shells indicate that the temporal sequence of taphonomic processes was as follows: (1) pre-mortem bioerosion and dissolution; (2) post-mortem bioerosion; (3) abrasion, disarticulation, and fragmentation; and (4) dissolution. A new graphic Illustration, the taphonomic constituent diagram (TCD), is proposed to illustrate the sequences of taphonomic processes. It is inspired by the ichnofabric constituent diagram used in ichnology and integrates the shell surface coverage of different taphonomic features by graphically plotting them against relative time. The taphonomic constituent diagram may display differences in the Chronologie order of paleoenvironmental processes. Also, the diagram enables a combination of both microscopic and macroscopic taphonomic features, and eases comparative studies of fossil assemblages.

Kurzfassung

Eine taphonomische Analyse der BivalvenArctica islandica (Arcticidae),Astarte borealis (Astartidae),Mytilus edulis (Mytilidae) undSpisula elliptica (Mactridae) aus flachmarinen Sedimenten des letzten Interglazials, die entlang des Pyoza in der Region Archangelsk aufgeschlossen sind, zeigt, dass sie in ihrer Erhaltung Unterschiede aufweisen, wahrscheinlich bedingt durch Unterschiede in ihrem Klappenumriss, der Schalenstruktur und ihrer Lebensweise. Die Gehäuse belegen eine zeitliche Abfolge taphonomischer Prozesse wie folgt: (1) prä-mortale Bioerosion und Lösung; (2) post-mortale Bioerosion; (3) Abrasion, Disartikulation und Fragmentation; und (4) Lösung. Eine neue graphische Darstellungsweise, das sog. „Taphonomische Bestandteil-Diagramm“ (Taphonomy Constituent Diagram; TCD) wird vorgestellt, um die Abfolge der taphonomischen Prozesse zu verdeutlichen. Es ist angelehnt an das „Spurengefüge Bestandteil-Diagramm“ (Ichnofabric Constituent Diagram), das in der Ichnologie verwendet wird, und verdeutlicht den Schalenoberflächen-Schutz verschiedener taphonomischer Phänomene durch graphische Gegenüberstellung zum relativen zeitlichen Ablauf. Das Taphonomic Constituent Diagram kann Unterschiede in der chronologischen Abfolge von Paläoumweltprozessen aufzeigen. Außerdem ermöglicht das Diagramm eine Kombination von mikroskopischen und makroskopischen taphonomischen Vorgängen und erleichtert vergleichende Studien fossiler Vergesellschaftungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Aitken, A.E. &Risk, M.J. 1988. Biotic interactions revealed by macroborings in arctic bivalve molluscs. — Lethaia21: 339–350.

    Article  Google Scholar 

  • Akberali, H.B.;Brear, K. &Currey, J.D. 1983. Mechanical and morphological properties of the shell ofScrobicularia plana (da Costa) under normal and stress conditions. — The Journal of Molluscan Studies49: 93–97.

    Google Scholar 

  • Alexandersson, E.T. 1979. Marine maceration of skeletal carbonates in the Skagerrak, North Sea. — Sedimentology26: 845–852.

    Article  Google Scholar 

  • Behrens, E.W. &Watson, R.L. 1969. Differential sorting of pelecypod valves in the swash zone. — Journal of Sedimentary Petrology39: 159–165.

    Google Scholar 

  • Belyea, P.R. &Carter, J.G. 1980. Impact- and grinding-type abrasion resistance of molluscan shell micro-structures in exterior versus interior shell layers. — The Geological Society of America, Abstracts with Programs12: 385.

    Google Scholar 

  • Bergman, K.M.;Elner, R.W. &Risk, M.J. 1982. The influence ofPolydora websteri borings on the strength of the shell of the sea scallop,Placopecten magellanicus. — Canadian Journal of Zoology60: 2551–2556.

    Article  Google Scholar 

  • Best, M.M.R. &Kidwell, S.M. 2000. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings, 2. Effect of bivalve life habits and shell types. — Paleobiology26: 103–115.

    Article  Google Scholar 

  • Boekschoten, G.J. 1967. Palaeoecology of some mollusca from the Tielrode Sands (Pliocene, Belgium). — Palaeogeography, Palaeoclimatology, Palaeoecology3: 311–362.

    Article  Google Scholar 

  • Brett, C.E. &Baird, G.C. 1986. Comparative taphonomy: A key to paleoenvironmental Interpretation based on fossil preservation. — Palaios1: 207–227.

    Article  Google Scholar 

  • Bromage, T.G. 1984. Interpretation of scanning electron microscopic Images of abraded forming bone surfaces. — American Journal of Physical Anthropology64: 161–178.

    Article  Google Scholar 

  • Bromley, R.G. 1981. Concepts in ichnotaxonomy illustrated by small round holes in Shells. — Acta Geologica Hispanica16: 55–64.

    Google Scholar 

  • Bromley, R.G. 1994. The palaeoecology of bioerosion. — In:Donovan, S.K., ed., The palaeobiology of trace fossils: 135–154, Chichester (John Wiley and Sons).

    Google Scholar 

  • Bromley, R.G. &D’Alessandro, A. 1983. Bioerosion in the Pleistocene of southern Italy: IchnogeneraCaulostrepsis andMaeandropolydora. — Rivista Italiana di Paleontologia e Stratigrafia89: 283–309.

    Google Scholar 

  • Brown, T. 1827. Illustrations of the recent conchology of Great Britain and Ireland. — 125 p., Edinburgh (D. Lizars).

    Google Scholar 

  • Bøggild, O.B. 1930. The shell structure of the mollusks. — Det Kongelige Danske Videnskabernes Selskabs Skrifter, Naturvidenskab og Mathematik Afdeling (9)2 (2): 233–326.

    Google Scholar 

  • Cadée, G.C. 1968. Molluscan biocoenoses and thanatocoenoses in the Ria de Arosa, Galicia, Spain. — Zoologische Verhandelingen, Rijksmuseum van Natuurlijke Historie, Leiden95: 1–121.

    Google Scholar 

  • Cadée, G.C. 1994. Eider, shelduck and other predators, the main producers of shell fragments in the Wadden Sea, palaeoeco-logical implications. — Palaeontology37: 181–202.

    Google Scholar 

  • Cadée, G.C. 1995. Birds as producers of shell fragments in the Wadden Sea, in particular the role of the herring gull. — Geobios MS18: 77–85.

    Article  Google Scholar 

  • Callender, W.R.;Powell, E.N. &Staff, G.M. 1994. Taphonomic rates of molluscan Shells placed in autochthonous assemblages on the Louisiana Continental slope. — Palaios9: 60–73.

    Article  Google Scholar 

  • Carriker, M.R. 1969. Excavation of boreholes by the gastropod,Urosalpinx: An analysis by light and scanning electron microscopy. — American Zoologist9: 917–933.

    Google Scholar 

  • Carter, J.G. 1980. Guide to bivalve shell mierostructures. — In:Rhoads, D.C. &Lutz, R.A., eds, Skeletal growth of aquatic organisms: Biological records of environmental change: 645–673, New York (Plenum Press).

    Google Scholar 

  • Carter, J.G. 1990. Skeletal biomineralization: patterns, processes and evolutionary trends, 1. — 832 p.; 2. — 101 p., New York (Van Nostrand Reinhold).

    Google Scholar 

  • Carter, J.G.;Lutz, R.A. &Tevesz, M.J.S. 1990. Shell microstructural data for the Bivalvia, 6. Orders Modiomorphoida and Mytiloida. — In:Carter, J.G., ed., Skeletal biomineralization: patterns, processes and evolutionary trends: 391–411, New York (Van Nostrand Reinhold).

    Google Scholar 

  • Chave, K.E. 1964. Skeletal durability and preservation. — In:Imbrie, J. &Newell, N.D., eds, Approaches to paleoecology: 377–387, New York (John Wiley and Sons).

    Google Scholar 

  • Clark, G.R. II 1999. Organic matrix taphonomy in some molluscan shell microstructures. — Palaeogeography, Palaeoclimatology, Palaeoecology149: 305–312.

    Article  Google Scholar 

  • Clarke, J.M. 1908. The beginnings of dependent life. — New York State Museum Bulletin121: 146–169.

    Google Scholar 

  • Crenshaw, M.A. &Neff, J.M. 1969. Decalcification at the mantle-shell interface in molluscs. — American Zoologist9: 881–885.

    Google Scholar 

  • Cummins, R.H.;Powell, E.N.;Stanton, R.J. jr. &Staff, G. 1986. The size-frequency distribution in palaeoecology: The effects of taphonomic proeeesses during formation of death assemblages in Texas bays. — Palaeontology29: 495–518.

    Google Scholar 

  • Currey, J.D. 1979. The effect of drying on the strength of mollusc Shells. — Journal of Zoology188: 301–308.

    Article  Google Scholar 

  • Currey, J.D. &Taylor, J.D. 1974. The mechanical behaviour of some molluscan hard tissues. — Journal of Zoology173: 395–406.

    Google Scholar 

  • Cutler, A.H. 1987. Surface textures of Shells as taphonomic indicators. — In:Flessa, K.W., ed., Paleoecology and taphonomy of Recent to Pleistocene intertidal deposits Gulf of California. — The Paleontological Society, Special Publication2: 164–176.

    Google Scholar 

  • Cutler, A. 1995. Taphonomic implications of shell surface textures in Bahia la Choya, northern Gulf of California. — Palaeogeography, Palaeoclimatology, Palaeoecology114: 219–240.

    Article  Google Scholar 

  • Cutler, A.h. &Flessa, K.W. 1995. Bioerosion, dissolution and precipitation as taphonomic agents at high and low latitudes. — Senckenbergiana Maritima25: 115–121.

    Google Scholar 

  • Devyatova, E.I. &Loseva, E.I. 1964. Stratigrafiya i paleogeografiya Chetvertichnogo perioda v Basseyne r. Mezeni. (Stratigraphy and paleogeography of the Quaternary period in the Mezen River Basin). — 105 p., Leningrad (Akademiya Nauk SSSR, Koi Filial Institut Geologii).

    Google Scholar 

  • Driscoll, E.G. 1968. Sublittoral attached epifaunal development in Blizzards Bay, Massachusetts. — Hydrobiologia32: 27–32.

    Article  Google Scholar 

  • Driscoll, E.G. 1970. Selective bivalve destruction in marine environments, a field study. — Journal of Sedimentary Petrology40: 898–905.

    Google Scholar 

  • Ekdale, A.A. &Bromley, R.G. 1983. Trace fossils and ichnofabric in the Kjølby Gaard Marl, uppermost Cretaceous, Denmark. — Bulletin of the Geological Society of Denmark31: 107–119.

    Google Scholar 

  • Ekdale, A.A.;Bromley, R.G. &Pemberton, S.G. 1984. Ichnology. The use of trace fossils in sedimentology and stratigraphy. — Society of Economic Paleontologists and Mineralogists, Short Course15: 1–317.

    Google Scholar 

  • Emig, C.C. 1990. Examples of post-mortality alteration in recent brachiopod Shells and (paleo)ecological consequences. — Marine Biology104: 233–238.

    Article  Google Scholar 

  • Evseev, G.A. &Kiyashko, S.I. 1999. Isotopic-microstructural analysis of Shells and temperature conditions of inhabitation in the bivalve molluskTridonta borealis in the Chukchi and Bering Seas and the Sea of Japan. — Russian Journal of Marine Biology25: 120–122.

    Google Scholar 

  • Flessa, K.W. &Brown, T. 1983. Selective Solution of macroin-vertebrate calcareous hard parts: A laboratory study. — Lethaia16: 193–205.

    Article  Google Scholar 

  • Flessa, K.W.;Kowalewski, M. &Walker, S.E. 1992. Post-collection taphonomy: Shell destruction and the Chevrolet. — Palaios7: 553–554.

    Article  Google Scholar 

  • Frey, R.W. &Henderson, S.W. 1987. Left-right phenomena among bivalve Shells: Examples from the Georgia coast. — Senckenbergiana Maritima19: 223–247.

    Google Scholar 

  • Friedman, G.M. 1959. Identification of carbonate minerals by staining methods. — Journal of Sedimentary Petrology29: 87–97.

    Google Scholar 

  • Gabriel, J.M. 1981. Differing resistance of various mollusc shell material to simulated whelk attack. — Journal of Zoology194: 363–369.

    Google Scholar 

  • Glover, C.P. &Kidwell, S.M. 1993. Influence of organic matrix on the post-mortem destruction of molluscan Shells. — The Journal of Geology101: 729–747.

    Google Scholar 

  • Goldring, R. 1995. Organisms and the Substrate: Response and effect. — In:Bosence, D.W.J. &Allison, P.A., eds, Marine palaeoenvironmental analysis from fossils. — Geological Society of London, Special Publication83: 151–180.

    Article  Google Scholar 

  • Hallman, D.P.;Flessa, K.W.;Kowalewski, M.;Hertweck, G.;Aggen, J. &Carlton, J. 1996. Ternary taphograms and the comparative taphonomy of Recent mollusks from the North Sea and the Gulf of California. — Senckenbergiana Maritima27: 67–75.

    Google Scholar 

  • Harper, E.M. 2000. Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? — Journal of Zoology251: 179–186.

    Article  Google Scholar 

  • Hertweck, G. 1979. Aufwuchs von See-Pocken auf Hartteilen anderer Tiere. — Natur und Museum109: 305–311.

    Google Scholar 

  • Hickman, C.S. 1985. Gastropod morphology and function. — In:Broadhead, T.W., ed., Mollusks, Notes for a short course, organized by D.J.Bottjer, C.S.Hickman & P.D.Ward. — University of Tennessee, Studies in Geology13: 138–156.

    Google Scholar 

  • Houmark-Nielsen, M.;Demidov, I.;Funder, S.;Grøsfjeld, K.;Kjær, K.H.;Larsen, E.;Lavrova, N.;Lyså, A. &Nielsen, J.K. 2001. Early and Middle Valdaian terrestrial and marine-based glaciations and periglacial interstadials in northwest Russia: New evidence from the Pyoza river area. — Global and Planetary Change31: 215–237.

    Article  Google Scholar 

  • Jackson, A.P.;Vincent, J.F.V. &Turner, R.M. 1988. The mechanical design of nacre. — Proceedings of the Royal Society of London (B)234: 415–440.

    Google Scholar 

  • Kidwell, S.M. &Bosence, D.W.J. 1991. Taphonomy and time-averaging of marine shelly faunas. — In:Allison, P.A. &Briggs, D.E.G., eds, Taphonomy: Releasing the data locked in the fossil record: 115–209, New York (Plenum Press).

    Google Scholar 

  • Kidwell, S.M.;Rothfus, T.A. &Best, M.M.R. 2001. Sensitivity of taphonomic signatures to sample size, sieve size, damage scoring System, and target taxa. — Palaios16: 26–52.

    Google Scholar 

  • Kowalewski, M. 1990. A hermeneutic analysis of the shell-drilling gastropod predation on mollusks in the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Central Poland). — Acta Geologica Polonica40: 183–213.

    Google Scholar 

  • Lever, J. 1958. Quantitative beach research I. The “left-right phe-nomenon”: Sorting of lamellibranch valves on sandy beaches. — Basteria22: 21–51.

    Google Scholar 

  • Linnaeus, C. 1758. Systema naturae, sive regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. 1. Regnum Animale. — 824 p., Holmiae.

  • Linnaeus, C. 1767. Systema naturae per regna tria nature, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio duodecima, reformata. 1. Regnum Animale. 2: 533–1327, Holmiae.

    Google Scholar 

  • Lutz, R.A. &Rhoads, D.C. 1980. Growth patterns within the molluscan shell: An overview. — In:Rhoads, D.C. &Lutz, R.A., eds, Skeletal growth of aquatic organisms: Biological records of environmental change: 203–254, New York (Plenum Press).

    Google Scholar 

  • Mapes, R.H. &Mapes, G. 1996. Biotic destruction of terrestrial plant debris in the Late Paleozoic marine environment. — Lethaia29: 157–169.

    Article  Google Scholar 

  • Martin, R.E. 1999. Taphonomy: A process approach. — 508 p., Cambridge (Cambridge University Press).

    Google Scholar 

  • Meldahl, K.H. &Flessa, K.W. 1990. Taphonomic pathways and comparative biofacies and taphofacies in a recent and inter-tidal/shallow shelf environment. — Lethaia23: 43–60.

    Article  Google Scholar 

  • Montagu, G. 1808. Supplement to Testacea Britannica. — 183 p., Exeter (S. Woolmer).

    Google Scholar 

  • Müller, A.H. 1951. Grundlagen der Biostratonomie. — Abhandlungen der Deutschen Akademie der Wissenschaften Berlin1950: 1–147.

    Google Scholar 

  • Nielsen, J.K. &Funder, S. 2003. Taphonomy of Eemian marine molluscs and acorn barnacles from eastern Arkhangelsk region, northern Russia. — Palaeogeography, Palaeoclimatology, Palaeoecology191: 139–168.

    Article  Google Scholar 

  • Nielsen, J.K. &Maiboe, J. 2000. Epofix and vacuum: An easy method to make casts of hard Substrates. — Palaeontologia Electronica3 (l): 1–10 [http://palaeo-electronica.org/2000_l/epofix/issue l_00.htm].

    Google Scholar 

  • Parsons, K.M. &Brett, C.E. 1991. Taphonomic processes and biases in modern marine environments: An actualistic perspective on fossil assemblage preservation. — In:Donovan, S.K., ed., The processes of fossilization: 22–65, London (Belhaven Press).

    Google Scholar 

  • Parsons, K.M.;Powell, E.N.;Brett, C.E.;Walker, S.E. &Callender, W.R. 1996. Taphonomic variability in molluscs on the Bahamas shelf margin and slope; depostitional environment vs. shell type after one and two years. — Geological Society of America, Abstracts with Programs28 (7): 364.

    Google Scholar 

  • Parsons, K.M.;Powell, E.N.;Brett, C.E.;Walker, S.E. &Callender, W.R. 1997. Shelf and slope experimental taphonomy initiative (SSETI): Bahamas and Gulf of Mexico. — Proceedings of 8th International Coral Reef Symposium2: 1807–1812.

    Google Scholar 

  • Pollard, J.E.;Goldring, R J.E. &Buck, S.G. 1993. Ichnofabrics containingOphiomorpha: Their significance in shallow-water facies interpretation. — Journal of the Geological Society of London150: 149–164.

    Article  Google Scholar 

  • Roy, K.;Miller, D.J. &LaBarbera, M. 1994. Taphonomic bias in analyses of drilling predation: Effects of gastropod drill holes on bivalve shell strength. — Palaios9: 413–421.

    Article  Google Scholar 

  • Schäfer, W. 1962. Aktuo-Paläontologie, nach Studien in der Nordsee. — 568 p., Frankfurt am Main (W. Kramer).

    Google Scholar 

  • Schumacher, C.F. 1817. Essai d’un nouveau système des habitations des vers Testaces. — 287 p. Copenhagen (Schultz).

    Google Scholar 

  • Staff, G.M. &Powell, E.N. 1990. Local variability of taphonomic attributes in a parautochthonous assemblage: Can taphonomic signature distinguish a heterogeneous environment? — Journal of Paleontology64: 648–658.

    Google Scholar 

  • Swinchatt, J.P. 1965. Significance of constituent composition, texture, and skeletal breakdown in some Recent carbonate Sediments. — Journal of Sedimentary Petrology35: 71–90.

    Google Scholar 

  • Taylor, A.M. &Goldring, R. 1993. Description and analysis of bioturbation and ichnofabric. — Journal of the Geological Society of London150: 141–148.

    Article  Google Scholar 

  • Taylor, J.D.;Kennedy, W.J. &Hall, A. 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea-Trigonacea. — Bulletin of the British Museum (Natural History), Zoology, Supplement3: 1–125.

    Google Scholar 

  • Taylor, J.D.;Kennedy, W.J. &Hall, A. 1973. The shell structure and mineralogy of the Bivalvia, 2. Lucinacea-Clavagellacea, conclusions. — Bulletin of the British Museum (Natural History), Zoology22: 253–294.

    Google Scholar 

  • Taylor, J.D. &Layman, M. 1972. The mechanical properties of bivalve (Molluscan) shell structures. — Palaeontology15:73–87.

    Google Scholar 

  • Teichert, C. &Severtenty, D.L. 1947. Deposits of Shells trans-ported by birds. — American Journal of Science245: 322–328.

    Google Scholar 

  • Yavnov, S.V. 1980. Shell structure in mollusks of the family Mactridae. — Biologiya Morya, Vladivostok 3: 62–66. [in Russian; translation in Soviet Journal of Marine Biology].

    Google Scholar 

  • Viana, M.S.S. &Richter, M. 1998. Preservation of biomineralized tissues of fishes from the Santana Formation (Lower Cretaceous of the Araripe Basin, NE-Brazil). — Estudos Technologicos21: 91–100.

    Google Scholar 

  • Walker, B.M. 1979. Shell dissolution: Destructive diagenesis in a meteoric environment. — Scanning Electron Microscopy1979: 463–468.

    Google Scholar 

  • Walker, S.E. &Goldstein, S.T. 1999. Taphonomic tiering: Experimental field taphonomy of molluscs and Foraminifera above and below the Sediment-water interface. — Palaeogeography, Palaeoclimatology, Palaeoecology149: 227–244.

    Article  Google Scholar 

  • Warme, J.E. 1975. Borings as trace fossils and the processes of marine bioerosion. — In:Frey, R.W., ed., The study of trace fossils: A synthesis of principles, problems and procedures in ichnology: 181–227, New York (Springer).

    Google Scholar 

  • Weigelt, J. 1927. Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung. — 227 p., Leipzig (Max Weg).

    Google Scholar 

  • Zuschin, M.;Stachowitsch, M.;Pervesler, P. &Kollmann, H. 1999. Structural features and taphonomic pathways of a high-biomass epifauna in the northern Gulf of Trieste, Adriatic Sea. — Lethaia32: 299–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, J.K. Taphonomy in the light of intrinsic shell properties and life habits: Marine bivalves from the Eemian of northern Russia. Paläont. Z. 78, 53–72 (2004). https://doi.org/10.1007/BF03009130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03009130

Keywords

Schlüsselwörter

Navigation