Skip to main content
Log in

Pt-V2O5-WO3/TiO2 catalysts supported on SiC filter for NO reduction at low temperature

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The catalytic filter, V2O5-WO3-TiO2 supported on a ceramic filter, is known as a promising material for treating particulates and NO x simultaneously at optimum temperatures around 320°C. In order to improve its catalytic activity at low temperatures, the effect of Pt addition on the catalytic filter has been investigated. Catalytic filters, Pt-V2O5-WO3-TiO2/SiC, were prepared by co-impregnation of Pt, V, and W precursors on TiO2 coated-SiC filter by vacuum aided-dip coating. The Pt-added catalytic filter shifted the optimum working temperature from 280–330°C (for the non Pt-impregnated filter) to 180–230°C, providing N x slip concentration less than 20 ppm for the treatment of 700 ppm NO at a face velocity of 2 cm/s with the same value over the non Pt-added catalytic filters. The promotional effect following the addition of Pt is believed to result from electrical modification of the catalyst maintaining a high electron transfer state. Ammonia oxidation was also observed to be dominant above the optimal temperature for SCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alemany, L. J., Lietti, L., Ferlazzo, N., Forzatti, P. G., Busca, Giamello, E. and Bregani, F., “Reactivity and Physicochemical Characterization of V2O5-WO3/TiO2De-NO x Catalysts”,J. of Catalysis,155, 117 (1995).

    Article  CAS  Google Scholar 

  • Alemany, L. J., Berti, F., Busca, G., Ramis, G., Robba, D., Toledo, G. P. and Trombetta, M., “Characterization and Composition of Commercial V2O5-WO3-TiO2 SCR Catalysts”,Appied Catalysis B: Environmental,10, 299 (1996).

    Article  CAS  Google Scholar 

  • Amiridis, M. D., Wachs, I. E. and Jehng, J. M., “Reactivity of the V2O5 Catalysts for the Selective Catalytic Reduction of NO by NH3”,J. Catal.,161, 247 (1996).

    Article  CAS  Google Scholar 

  • Blanco, J., Avila, P., Suárez, S., Martín, J. A. and Knapp, C., “Alumina- and Titania-based Monolithic Catalysts for Low Temperature Selective Catalytic Reduction of NitrogenOxides”,Applied Catal. B: Environ.,28, 235 (2000).

    Article  CAS  Google Scholar 

  • Bosch, H. and Janssen, F., “Catalytic Reduction ofNitrogen Oxides. A Review on the Fundamentals and Technology”,Catal. Today,2, 369 (1988).

    Article  CAS  Google Scholar 

  • Van den Broek, A. C. M., van Grondelle, J. and van Santen, R.A., “Determination of Sulface Coverage of Catalysts”,J. of Catlysis,185, 297 (1999).

    Article  Google Scholar 

  • Busca, G., Lietti, L., Ramis, G. and Berti, F., “Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NO x by Ammonia Over Oxide Catalysts: A Review”,Applied Catal. B; Environ.,18, 1 (1998).

    Article  CAS  Google Scholar 

  • Choi, E., Lee, J. K., Park, D. and Park, W. H., “Removal of SOx andNO x from Flue Gas with Ceria”,Korean J. Chem. Eng.,11, 25 (1994).

    Article  CAS  Google Scholar 

  • Choi, J. H., Kim, S. K., Ha, S. J. and Bak, Y. C., “The Preparation of V2O5/TiO2 Catalyst Supported on the Ceramic Candle for Selective Reduction of NO”,Korean J. Chem. Eng.,18, 456 (2001a).

    Article  CAS  Google Scholar 

  • Choi, J. H., Kim, S. K. and Kim, Y. G., “The Reactivity of V2O5-WO3-TiO2 Catalyst Supported on a Ceramic Filter Candle for Selective Reduction of NO”,Korean J. Chem. Eng.,18, 719 (2001b).

    Article  CAS  Google Scholar 

  • Forzatti, P. and Lietti, L., “Recent Advances in De-NO x ing Catalysis for Stationary Applications”,Heterog. Chem. Rev.,3(1), 33 (1996).

    Article  CAS  Google Scholar 

  • Gang, L., Anderson, B. G., van Grondelle, J. and van Santen, R A., “NH3 Oxidation to Nitrogen and Water at Low Temperatures using Supported Transition Metal Catalysts”,Catal. Today,61, 179 (2000).

    Article  CAS  Google Scholar 

  • Ham, S. W., Nam, I. S. and Kim, Y. G., “Activity and Durability of Ironexchanged Mordenite-type Zeolite Catalyst for the Reduction ofNOby NH 3”,KoreanJ. Chem. Eng.,17, 318 (2000).

    Article  CAS  Google Scholar 

  • Jung, S. M. and Grange, P., “Investigation of the Promotional Effect of V2O5 on the SCR Reaction and its Mechanism on Hybrid Catalyst with V2O5 and TiO2-SO 2-4 Catalysts”,Applied Catalysis B: Environ.,36, 325 (2002).

    Article  CAS  Google Scholar 

  • Kim, M. H., Nam, I.-S. and Kim, Y. G., “Reaction Intermediate over Mordenite-type Zeolite Catalysts for NO Reduction by Hydrocarbons”,Korean J. Chem. Eng.,16, 139 (1999).

    Article  Google Scholar 

  • Lee, H.-T. and Rhee, H.-K., “Steam Tolerance of Fe/ZSM-5 Catalyst for the Selective Catalyitic Reduction ofNO”,Korean J. Chem. Eng.,20, 574 (2002).

    Article  Google Scholar 

  • Li, Y. and Armor, N., “Selective Ammonia Oxidation to N2 in a Wet Stream”,Applied Catal. B: Environ.,13, 131 (1997).

    Article  Google Scholar 

  • Linsebigler, A. L., Lu, G. and Yates, J. T. Jr., “Photocatalysis on TiO2 Surface: Principles, Mechanisms, and Selected Results”,Chem. Rev.,95, 735 (1995).

    Article  CAS  Google Scholar 

  • Long, R. Q. and Yang, R. T., “Noble Metal (Pt, Rh, Pd) Promoted Fe-ZSM-5 for Selective Catalytic Oxidation of Ammonia to N2 at Low Temperature”,Catalysis Letters,78(104), 353 (2002).

    Article  CAS  Google Scholar 

  • Nam, I. S., “A Catalytic Process for the Reduction of NO x from Stationary Sources”,Catalysis,11(1), 5 (1995).

    Google Scholar 

  • Paganini, M. C., Acqua, L. D., Giamello, E. G., Lietti, L., Foratti, P. and Busca, G., “An EPR Study of the Surface Chemistry of the V2O5-WO3/TiO2 Catalyst: Redox Behaviour and State of V (IV)”,J. Catal.,166, 195 (1997)

    Article  CAS  Google Scholar 

  • Peña, D. A., Uphade, B. S. and Sminiotis, P. G., “TiO2-supported Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NO with NH2”,J. Catal.,221, 421 (2004).

    Article  Google Scholar 

  • Perez, V., Miachon, S., Dalmon, J.-A., Bredesen, R., Pettersen, G., Rader, H. and Simon, C., “Preparation and Characterization of a Pt/Ceramic Catalytic Membrane”,Seperation and Purification Technology,25, 33 (2001).

    Article  CAS  Google Scholar 

  • Praserthdam, P., Chaisuk, C. and Mongkhonsi, T., “The Nature of Surface Species on Modified Pt-Based catalysts for the SCR of NO by C3H6 Under Lean-Burn Condition”,Korean J. Chem. Eng.,20, 32 (2003).

    Article  CAS  Google Scholar 

  • Qi, G. and Yang, R. T., “A Superior Catalyst for Low-temperature NO Reduction with NH3”,J. Catal.,217, 434 (2003).

    CAS  Google Scholar 

  • Sanchez, E. and Lopez, T., “Effect of Preparation Method on the Band Gap of Titania and Platinum-titania Sol-gel Materials”,Mat. Lett.,25, 271 (1995).

    Article  CAS  Google Scholar 

  • Saracco, G. and Montanaro, L., “Catalytic ceramic Filter for Flue Gas Cleaning. 1. Preparation and Characterization”,Ind. Eng. Chem. Res.,34, 1471 (1995).

    Article  CAS  Google Scholar 

  • Schulz, K. and Durst, M., “Advantages of an Integrated System for Hot Gas Filtration using Rigid Ceramic Elements”,Filtration & Separation,January/February, 25 (1994).

  • Shin, B. S., Lim, S. Y. and Choung, S. J., “WO3 and MoO3 Addition Effect on V2O5/TiO2 as Promoters for Removal of NO x and SO x from Stationary Sources”,Korean J. Chem. Eng.,11, 254 (1994).

    Article  CAS  Google Scholar 

  • Siemon, U., Bahnemann, D., Testa, J. J., Rodriguez, D., Litter, M. I. and Bruno, N., “Heterogeneous Photocatalytic Reactions Comparing TiO2 and Pt/TiO2”,J. of Photochemistry and Photobiology A: Chemistry,148, 247 (2002).

    Article  CAS  Google Scholar 

  • Suárez, S., Jung, S. M., Avila, P. and Grange, P., “Influence of NH3 and NO Oxidation on the SCR Reduction Mechanism on Copper/Nickel and Vanadium Oxide Catalysts Supported on Alumina and Titania”,J. Blanco, Catal. Today,75, 331 (2002).

    Article  Google Scholar 

  • Sobczyk, D. P., van Grondelle, J., Thüne, P. C., Kieft, I. E., de Jong, A. M. and van Santen, R. A., “Low-Temperature Ammonia Oxidation on Platinum Sponge Studied with Positron Emission Profiling”,J. Catal.,225, 466(2004).

    Article  CAS  Google Scholar 

  • Sohn, J. R. and Bae, J. H., “Characterization of Tungsten Oxide Supported on TiO2 and Activity for Acid Catalysis”,Korean J. Chem. Eng.,17, 86 (2000).

    Article  CAS  Google Scholar 

  • Taguchi, J. and Okuhara, T., “Selective Oxidative Decomposition of Ammonia in Neutral Water to Nitrogen over Titania-supported Platinum or Palladium Catalyst”,Applied Catal. A: General,194–195, 89 (2000).

    Article  Google Scholar 

  • U.S. Department of Energy, Clean Coal Today, DOE/FE-0215P-53 Issue No. 53, Spring (2003).

  • U.S. Department of Energy, Clean Coal Today, DOE/FE-0215P-54 Issue No. 54, Summer (2003).

  • Van den Broek, A. C. M., van Grondelle, J. and van Santen, R. A., “Determination of Surface Coverage of Catalysts: Temperature Programmed Experiments on Platinum and Iridium Sponge Catalysts after Low Temperature Ammonia Oxidation”,J. Catal.,185, 297 (1999).

    Article  Google Scholar 

  • Zhu, Z., Liu, Z., Niu, H. and Liu, S., “Promoting Effect of SO2 on Activated Carbon-Supported Vanadia Catalyst for NO Reduction by NH3 at Low Temperatures”,J. Catal.,187, 245 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hong Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, JH., Kim, JH., Bak, YC. et al. Pt-V2O5-WO3/TiO2 catalysts supported on SiC filter for NO reduction at low temperature. Korean J. Chem. Eng. 22, 844–851 (2005). https://doi.org/10.1007/BF02705663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705663

Key words

Navigation