Skip to main content
Log in

Assessment of reference values for hair minerals of Korean preschool children

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hair samples of 655 children (3–6 yr of age) from metropolitan and small cities in Korea were analyzed to determine the content of 23 minor and trace elements with the aim of assessing reference values. Fifteen essential elements (Fe, Zn, Cu, Ca, Mg, Mn, P, Na, K, Cr, Se, Li, V, Co, Mo) and 8 harmful elements (Pb, Al, Hg, As, Cd, Ba, Bi, U) were taken into account. Measurements were performed by inductively coupled plasma-mass spectrometry. The overall mean values were as follows (μ/g): Al, 8.78; As, 0.11; Ba, 0.32; Bi, 0.04; Ca, 212.47; Cd, 0.08; Co, 0.01; Cr, 0.47; Cu, 15.51; Fe, 12.62; Hg, 0.49; K, 34.10; Li, 0.01; Mg, 12.29; Mn, 0.29; Mo, 0.07; Na; 27.14; P, 121.21; Pb, 1.68; Se, 0.75; U. 0.04; V. 0.08; Zn, 69.99. There was no significant difference in hair mineral content between children living in metropolitan and small cities. There were positive correlations between age and the level of Zn, Ca, Na, P, Mn, and Li, but negative correlations between age and the level of Cr, V, and U. The proposed reference values for hair Zn, Mg, Ca, As, and Cd of Korean children were lower than those of other countries, but the values for other elements of hair were not significantly different from those of other countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Burtis and E. R. Ashwood, Tietz Textbook of Clinical Chemistry, 3rd ed., W. B. Saunders, Philadelphia, pp. 1029–1055 (1999).

    Google Scholar 

  2. G. N. Kim and H. J. Song, Hair mineral analysis of normal Korean children, Korean J. Dermatol. 40(12) 1518–1526 (2002).

    Google Scholar 

  3. B. S. Son, E. J. Hong, and Y. S. Kim, A study on trace metal levels in hair, Korean Ind. Hyg. Assoc. J. 7(2), 233–244 (1997).

    Google Scholar 

  4. B. Nowak, Contents and relationship of elements in human hair for a non-industrialised population in Poland, Sci. Total Environ. 209(1), 59–68 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. D. A. Bass, D. Hickock, D. Quig, and K. Urek, Trace element analysis in hair: factors determining accuracy, precision and reliability, Altern. Med. Rev. 6(5), 472–481 (2001).

    PubMed  CAS  Google Scholar 

  6. N. Miekeley, M. T. W. Dias Carneiro, and C. L. Porto da Silveira, How reliable are human hair reference intervals for trace elements? Sci. Total Environ. 218(1), 9–17 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. K. Sera, S. Futatsugawa, and S. Murao, Quantitative analysis of untreated hair samples for monitoring human exposure to heavy metals, Nucl. Instr. Methods Phys. Res. B 189, 174–179 (2002).

    Article  CAS  Google Scholar 

  8. I. Rodushkin and M. D. Axelsson, Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part II. A study of the inhibitants of northern Sweden, Sci. Total Environ. 262(1–2), 21–36 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. I. Rodushkin and M. D. Axelsson, Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part I. Analytical methodology, Sci. Total Environ. 250(1–3) 83–100 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. Korea National Statistical Office's study (2000).

  11. Y. T. Kwon, A study on the heavy metal content in scalp hair of Korean, Russian, Japanese and American, Inst. Environ. Res. Kyungnam Univ. Korea 12, 65–77 (1990).

    Google Scholar 

  12. C. A. Heyneman, Zinc deficiency and taste disorders, Ann. Pharmacother. 30(2), 186–187 (1996).

    PubMed  CAS  Google Scholar 

  13. V. A. Batzevich, Hair trace element analysis in human ecology studies, Sci. Total Environ. 164(2), 89–98 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. W. T. Kwong, P. Friello and R. D. Semba, Interactions between iron deficiency and lead poisoning: epidemiology and pathogenesis, Sci. Total Environ. 330(1–3), 21–37 (2004).

    PubMed  CAS  Google Scholar 

  15. D. Jarosinska, S. Peddada, and W. J. Rogan, Assessment of lead exposure and associated risk factors in urban children in Silesia, Poland, Environ. Res. 95(2), 133–142 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. A. Yasutake, M. Matsumoto, M. Yamaguchi, and N. Hachiya, Current hair mercury level in Japanese: survey in five districts, Tohoku J. Exp. Med. 199(3), 161–169 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. S. A. Counter, and L. H. Buchanan, Mercury exposure in children: a review, Toxicol. Appl. Pharmacol. 198(2), 209–230 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. P. Ip, V. Wong, M. Ho, J. Lee, and W. Wong, Environmental mercury exposure in children: South China's experience, Pediatr. Int. 46(6), 715–721 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. C. K. Man, Y. H. Zheng, and P. K. Mak, Hair analysis of spastic children in Hong Kong, Sci. Total Environ. 191(3), 291–295 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. M. Wilhelm, I. Lombeck, and F. K. Ohnesorge, Cadmium, copper, lead and zinc concentrations in hair and toenail of young children and family members: a follow-up study, Sci. Total Environ. 141(1–3), 275–280 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. N. Lekouch, A. Sedki, S. Bouhouch, A. Nejmeddine, A. Pineau, and J. C. Pihan, Trace elements in children's hair, as related exposure in wastewater spreading field of Marrakesh (Morocco), Sci. Total Environ. 243/244, 323–328 (1999).

    Article  CAS  Google Scholar 

  22. H. T. Delves, Assessment of trace element status, Clin. Endocrinol. Metab. 14(3), 725–760 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. N. Baumslag, D. Yeager, L. Levin, and H. G. Petering, Trace metal content of maternal and neonate hair. zinc, copper, iron and lead, Arch. Environ. Health. 29(4), 186–191 (1974).

    PubMed  CAS  Google Scholar 

  24. H. G. Petering, D. W. Yeager, and S. O. Witherup, Trace metal contents of hair. II. Cadmium and lead of human hair in relation to age and sex, Arch. Environ. Health 27(5), 327–330 (1973).

    PubMed  CAS  Google Scholar 

  25. T. L. Dormandy, Trace element analysis of hair, Br. Med. J. 293, 975–976 (1986).

    Article  CAS  Google Scholar 

  26. H. S. Park, and K. O. Shin, Hair zinc and lead: relationship to nutrient intake and height and body weight in Korean preschool children, Korean J. Nutr. 37(3) 193–201 (2004).

    CAS  Google Scholar 

  27. Senofonte, N. Violante, and S. Caroli, Assessment of reference values for elements in human hair of urban schoolboys, J Trace Elements Med. Biol. 14(1), 6–13 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HS., Shin, KO. & Kim, JS. Assessment of reference values for hair minerals of Korean preschool children. Biol Trace Elem Res 116, 119–130 (2007). https://doi.org/10.1007/BF02685925

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685925

Index Entries

Navigation