Skip to main content
Log in

Minority carrier diffusion lengths in liquid phase epitaxial InGaAsP and InGaAs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Minority carrier diffusion lengths were determined for InGaAsP and InGaAs layers grown by liquid phase epitaxy on (100)-InP substrates by measuring the variation of the short circuit photocurrent as a focussed laser beam was scanned along a beveled (~1°) p-n junction. The effect of lattice-mismatch on the hole diffusion length (λp) for n-type unintentionally doped InGaAsP layers (λg=1.15 µm) was investigated for mismatch values from -0.25% to +0.31%, with the longest diffusion length (Lp = 1.5 µm) occurring when the epitaxial layer was lattice-matched to the substrate. As the amount of mismatch increased, Lp decreased. Electron diffusion lengths, Ln, were determined for lattice-matched quaternary and ternary layers grown from Zn doped melts over a wide range of hole concentrations. At the lowest hole concentrations, p = 3 × l015 and 1.4 × 1016 cm−3, the electron diffusion lengths were 3.5 and 2.5 µm for the quaternary and ternary, respectively. As the hole concentration increased, Ln decreased and at the highest concentration (p = 5 × 10su18,cn−3) Ln was 0.13 µm for InGaAsP and 0.83 un for InGaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Olsen and T. J. Zamerowski, IEEE J. Quantum Electron.QE-17, 128 (1981).

    Article  Google Scholar 

  2. S. Sakai, M. Umeno, and Y. Amemiya, Japan J. Appl. Phys.19, 109 (1980).

    Article  CAS  Google Scholar 

  3. Y. Takeda, M. Kuzuhara, and A. Sasaki, Japan J. Appl. Phys.19, 899 (1980).

    Article  CAS  Google Scholar 

  4. M. Ettenberg, H. Kressel, and S. L. Gilbert, J. Appl. Phys.44, 827 (1973).

    Article  CAS  Google Scholar 

  5. K. L. Ashley and S. W. Beal, Appl. Phys. Lett.32, 375 (1978).

    Article  CAS  Google Scholar 

  6. C. J. Hwang, S. E. Haszko, and A. A. Bergh, J. Appl. Phys.42, 5117 (1971).

    Article  CAS  Google Scholar 

  7. L. W. Cook, M. M. Tashima, and G. E. Stillman, Appl. Phys. Lett.36, 904 (1980).

    Article  CAS  Google Scholar 

  8. M. Feng, L. W. Cook, M. M. Tashima, and G. E. Stillman, J. Electron. Mater.9, 241 (1980).

    Article  CAS  Google Scholar 

  9. N. Holonyak, Jr., B. A. Vojak, and R. M. Kolbas, Solid-State Electron.22, 431 (1979).

    Article  CAS  Google Scholar 

  10. J. J. Loferski and J. J. Wysocki, RCA Rev.22, 38 (1961).

    Google Scholar 

  11. C. E. Hurwitz and J. J. Hsieh, Appl. Phys. Lett.32, 487 (1978).

    Article  CAS  Google Scholar 

  12. H. C. Casey, Jr., B. I. Miller, and E. Pinkas, J. Appl. Phys.44, 1281 (1973).

    Article  CAS  Google Scholar 

  13. R. Bisaro, P. Merenda, and T. P. Pearsall, Appl. Phys. Lett.34, 100 (1979).

    Article  CAS  Google Scholar 

  14. M. L. Young and M. C. Rowland, Phys. Stat. Sol. (a),16, 603 (1973).

    Article  CAS  Google Scholar 

  15. T. Kuriyama, T. Kamiya, and H. Yanai, Japan J. Appl. Phys.16, 465 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tashima, M.M., Cook, L.W. & Stillman, G.E. Minority carrier diffusion lengths in liquid phase epitaxial InGaAsP and InGaAs. J. Electron. Mater. 11, 831–846 (1982). https://doi.org/10.1007/BF02672398

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672398

Key words

Navigation