Skip to main content
Log in

The bismuth-oxygen system

  • Published:
Journal of Phase Equilibria

Abstract

The phase diagram and thermodynamics data of the Bi-O system are reviewed and assessed. An optimized consistent thermodynamic description of the system at 1 bar total pressure is presented. The stable solid phases (solid Bi, α-Bi2O3, and δ-Bi2O3) are all treated as stoichiometric. The liquid phase is described by an ionic two-sublattice model, and the gas phase is treated as an ideal solution. Calculated phase diagrams and values for the thermodynamic properties of the bismuth oxides and the liquid are shown and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. A. Ditte and R. Metzner, “Effect of Bismuth on Hydrochloric Acid,”Compt. Rend., 115, 1303–1305 (1892) in French.

    Google Scholar 

  2. W.G. Mixter, “The Heat of Formation of Trisodium Orthophosphate, Trisodium Orthoarsenate, the Oxides of Antimony, Bismuth Trioxide; and Fourth Paper on the Heat of Combination of Acidic Oxides with Sodium Oxide,”Am. J. Sci., 28, 103–111 (1909).

    ADS  Google Scholar 

  3. O. Hauser and W. Steger, “On the Specific Heat of Bismuth Oxide,” Z.Anorg. Chem., 80, 1–6 (1913) in German.

    Google Scholar 

  4. C.T. Anderson, “The Heat Capacities of Bismuth and Bismuth Trioxide at Low Temperatures,”J. Am. Chem. Soc 52, 2720–2723 (1930).

    Google Scholar 

  5. L.G. Sillén, “X-Ray Studies on Bismuth Trioxide, “Ark. Kemi Mineral. Geoi, 1–15(1937).

  6. B. Aurivillius and L.G. Sillén, “Polymorphy of Bismuth Trioxide,”Nature, 755,305–306(1945).

    ADS  Google Scholar 

  7. C.B. Griffith and M.W. Mallett, “The Solubility of Carbon and Oxygen in Liquid Bismuth,”J. Am. Chem. Soc, 75, 1832–1834 (1953).

    Google Scholar 

  8. A.D. Mah, “Heats of Formation of Cerium Sesquioxide and Bismuth Sesquioxide by Combustion Calorimetry,”U.S. Bur. Mines RI, 5676 (1961).

  9. G. Gattow and H. Schröder, “The Crystal Structure of the High-Temperature Modification of Bismuth(III)-Oxide (d-Bi2O3),”Z. Anorg. Allg. Chem., 318, 176–189 (1962) in German.

    Google Scholar 

  10. G. Gattow and D. Schütze, “On a Bismuth(III)-Oxide with Higher Oxygen Content (b-Modification),”Z Anorg. Allg. Chem., 328, 44–68 (1964) in German.

    Google Scholar 

  11. E.M. Levin and R.S. Roth, “Polymorphism of Bismuth Sesqui- oxide: I.Pure Bi2O3,”J. Res. Natl. Bur. Stand, 68A, 189–195(1964).

    Google Scholar 

  12. E.M. Levin and R.S. Roth, “Polymorphism of Bismuth Sesqui- oxide: II. Effect of Oxide Additions on the Polymorphism of Bi2O3,”J. Res. Natl. Bur. Stand., 68A, 197–206 (1964).

    Google Scholar 

  13. A.A. Zav’yalova, R.M. Imamov, and Z.G. Pinsker, “An Elec- tron-Diffraction Study of Thin Films in the Bi-O System,”Kristallo- grafiya, 9(6), 857–863 (1964) in Russian; TR:Sov. Phys. Crystallogr., 9(6), 724–728 (1964).

    Google Scholar 

  14. E.M. Levin and C.L. McDaniel, “Heats of Transformations in Bismuth Oxide by Differential Thermal Analysis,”J. Res. Natl. Bur. Stand., 69A, 237–243 (1965).

    Google Scholar 

  15. A.A. Zav’yalova, R.M. Imamov, and Z.G. Pinsker, “Crystal Structure of Hexagonal BiO,”Kristallografiya, 10(4), 480–484 (1965) in Russian; TR:Sov. Phys. Crystallogr., 70(4), 401–403 (1965).

    Google Scholar 

  16. D. Cubicciotti and H. Eding, “Enthalpy and Entropy Increments above 298 for BiBr3, Bi2O3, Tl2O3, and TI2,”J. Chem. Eng. Data, 12, 548–551(1967).

    Google Scholar 

  17. A.A. Zav’yalova and R.M. Imamov, “Crystal Structure of a New Tetragonal Phase in the Bi-O System,”Kristallografiya, 13(1), 49–52 (1968)in Russian;TR:Sov.Phys. Crystallogr., 13(1),37–39(1968).

    Google Scholar 

  18. C.N.R. Rao, G.V.S. Rao, and S. Ramdas, “Phase Transforma- tions and Electrical Properties of Bismuth Sesquioxide,”J. Phys. Chem., 73,672–675(1969).

    Google Scholar 

  19. D. Schiferl and C.S. Barrett, “The Crystal Structure of Arsenic at 4.2, 78 and 299 K,”J. Appl. Crystallogr., 2, 30–36(1969).

    Google Scholar 

  20. G. Malmros, “The Crystal Structure of a-Bi2O3,”Acta Chem. Scand, 24, 384–396(1970).

    Google Scholar 

  21. A. V.R. Rao and V.B. Tare, “Free Energy of Formation of Bi2O3,”Scr. Metall, 5, 807–811 (1971).

    Google Scholar 

  22. A.A. Zav’yalova and R.M. Imamov, “The Structure of β- Bi2O2.5 Thin Films,”Kristallografiya, 16(3), 516–519 (1971) in Rus- sian; TR:Sov.Phys. Crystallogr., 76(3), 437–439 (1971).

    Google Scholar 

  23. B. Aurivillius and G. Malmros,Kungliga Tekniska Högskolans Handlingar, 291,545 (1972); cited from (78Har) and [88BIo].

    Google Scholar 

  24. B. Codron, P. Perrot, and G. Tridot, “Determination of the Ther- modynamic Properties of the Liquid in the Pb-Bi-O System by EMF Measurements,”C.R. Acad. Sc. Sr. C,274,398–400 (1972) in French.

    Google Scholar 

  25. D. Chatterji and J. V. Smith, “Free Energy of Formation of Bi2O3, Sb2O3, and TeO2 from EMF Measurements,”J. Electrochem. Soc, 120,889–893(1973).

    Google Scholar 

  26. A. V.R. Rao and V.B. Tare, “Determination of the Melting Point and Heat of Fusion of Bi2O3 by the Solid Electrolyte Technique,”J. Electrochem. Soc. India, 22, 20–22 (1973).

    Google Scholar 

  27. J.W. Medernach, “On the Structure of Evaporated Bismuth Oxide Thin Films,”J. Solid State Chem., 15,352–359(1975).

    ADS  Google Scholar 

  28. A.V Korobeinikova, V.A. Kholmov, and L.A. Rezmitskii,Vest. Mosk. Univ. Khim., 17(3), 381 (1976) in Russian.

    Google Scholar 

  29. G.M. Mehrotra, M.G. Frohberg, and M.L. Kapoor, “Standard Free Energy of Formation of Bi2O3,” ZPhys. Chem. Neue Folge, 99, 304–307(1976).

    Google Scholar 

  30. B. Isecke, “Equilibria Study in the Bismuth-, Antimony-, and Lead-Oxygen Systems,” Dissertation, TU Berlin (1977) in German.

  31. H.L. Lukas, E.T. Henig, and B. Zimmermann, “Optimization of Phase Diagrams by a Least Squares Method using Simultaneously Different Types of Data,”Calphad, 1, 225–236 (1977).

    Google Scholar 

  32. H.T. Cahen, M.J. Verkerk, and G.H.J. Broers, “Gibbs Free Energy of Formation of Bi2O3 from EMF Cells with δ-Bi2O3 Solid Electrolyte,”Electrochim. Acta, 23(8), 885–889 (1978).

    Google Scholar 

  33. H.A. Harwig, “On the Structure of Bismuth Sesquioxide: the α, β, γ, and δ-Phase,”Z. Anorg. Allg. Chem., 444, 154–166(1978).

    Google Scholar 

  34. H.A. Harwig and J.W. Weenk, “Phase Relations in Bismuth Sesquioxide,”Z. Anorg. Allg. Chem., 444, 167–177 (1978).

    Google Scholar 

  35. S.K. Hahn and DA. Stevenson, “Thermodynamic Investigation of Antimony+Oxygen and Bismuth+Oxygen using Solid-State Elec- trochemical Techniques,”J. Chem. Thermodynamics, 11, 621–631 (1979).

    Google Scholar 

  36. H.A. Harwig and A.G. Gerards, “The Polymorphism of Bismuth Sesquioxide,”Thermochim, Acta, 28, 121–131 (1979).

    Google Scholar 

  37. B. Isecke and J. Osterwald, “Equilibria Study in the Bismuth- Oxygen System,” Z.Phys. Chem. Neue Folge, 115, 17–24 (1979) in German.

    Google Scholar 

  38. K. Fitzner, “Diffusivity, Activity and Solubility of Oxygen in Liq- uid Bismuth,”Thermochim. Acta, 35, 277–286 (1980).

    Google Scholar 

  39. G. Gattow and W. Klippel, “Study of Bismuth(V)-Oxide,”Z. Anorg. Allg. Chem., 470, 25–34 (1980) in German.

    Google Scholar 

  40. L.N. Sidorov, I.I. Minayeva, E.Z. Zasorin, I.D. Sorokin, and A.Ya. Borshchevskiy, “Mass Spectrometric Investigation of Gas-Phase Equilibria over Bismuth Trioxide,”High Temp. Sci., 12, 175–196(1980).

    Google Scholar 

  41. V.E. Gorbunov, K.S. Gavrichev, O.A. Sarakhov, and V.B. Laz- arev, “Thermodynamic Functions of Bi2O3 in the Temperature Range 11–298 K,”Zh. Neorg. Khim., 26(2), 546–547 (1981) in Russian; TR:Russ. J. Inorganic Chem., 26(2), 297 (1981).

    Google Scholar 

  42. B. Heshmatpour and D.A. Stevenson, “An Electrochemical Study of the Solubility and Diffusivity of Oxygen in the Respective Liquid Metals Indium, Gallium, Antimony, and Bismuth,”J. Elec- troanal. Chem. Interfacial Electrochem., 130, 41–55(1981).

    Google Scholar 

  43. S. Otsuka, T. Sano, and Z. Kozuka, “Activities of Oxygen in Liq- uid Bi, Sn, and Ge from Electrochemical Measurements,”Metall. Trans.12(3), 427–433 (1981).

    Google Scholar 

  44. E.S. Anik, “On the Solubility of Oxygen in Binary Alloys under the Particular Consideration of Experimental Results in the Copper-Bismuth-Oxygen System at 1200 °C,” Dissertation, TU Berlin (1983) in German.

  45. S. Itoh and T. Azakami, “Activity Measurements of Liquid Bi-Sb Alloys by the EMF Method using Solid Electrolytes,”J. Jpn. Inst. Met.,48, 293–301 (1984) in Japanese.

    Google Scholar 

  46. S.C. Marschman and D.C. Lynch, “Review of the Bi and Bi-O Vapor Systems,”Can. J. Chem. Eng., 62(6), 875–879 (1984).

    Google Scholar 

  47. S.C. Schaefer, “Electrochemical Determination of Thermody- namic Properties of Bismuth Sesquioxide and Stannic Oxide,”U.S. Bureau of Mines RI, 8906 (1984).

  48. M. Hillert, B. Jansson, B. Sundman, and J. Agren, “A Two-Sublattice Model for Molten Solutions with Different Tendency for Ioniza- tion,”Metall. Trans. A, 16,261–266(1985).

    Google Scholar 

  49. J.-O. Andersson, A. Fernandez-Guillermet, P. Gustafson, M. Hillert, B. Jansson, B. Jönsson, Sundman, and J. Ågren, “A New Method of Describing Lattice Stabilities,”Calphad, 11, 93–98(1987).

    Google Scholar 

  50. A. Buker and Greaves, “Reduction and Reoxidation Be- haviour of α-Bi2MoO6,”J. Catal, 108,247–249(1987).

    Google Scholar 

  51. H. Kodama, A. Watanabe, and Y. Yajima, “Synthesis of a New Bismuth Oxide Fluoride with the β-Bi2O3 Structure Type,”J. Solid State Chem., 67,170–175 (1987).

    ADS  Google Scholar 

  52. S.K. Blower and C. Greaves, “The Structure of β-Bi2O3 from Powder Neutron Diffraction Data,”Acta Crystallogr. C, 44, 587–589 (1988).

    Google Scholar 

  53. B. Begemann, “On the Binary and Pseudobinary Oxides of Ar- senic, Antimony and Bismuth,” Dissertation, Universität Hannover (1989) in German.

  54. B. Begemann and M. Jansen, “Bi4O7, the First Defined Binary Bismuth(III,V)-Oxide,”J. Less-Common Met., 156,123–135(1989) in German.

    Google Scholar 

  55. A.T Dinsdale, “SGTE Data for Pure Elements,”Calphad, 15, 317–425(1991).

    Google Scholar 

  56. K. Kameda and K. Yamaguchi, “Activity Measurements of Liquid Ag-Bi Alloys by an EMF Method using a Zirconia Electro- lyte,” J.-Jpn. Inst. Met., 55, 536–544 (1991) in Japanese.

    Google Scholar 

  57. K. Kameda, K. Yamaguchi, and T. Kon, “Activity of Liquid Tl- Bi Alloys Measured by an EMF Method using Zirconia Electrolyte,”J. Jpn. Inst. Met., 56, 900–906 (1992) in Japanese.

    Google Scholar 

  58. H.L. Lukas and S.G. Fries, “Demonstration of the use of BINGSS with the Mg-Zn System as Example,”J. Phase Equilibria, 13(5), 532–541 (1992).

    Google Scholar 

  59. B. Hallstedt, D. Risold, and L. J. Gauckler, “Thermodynamic As- sessment of the Copper-Oxygen System,”J. Phase Equilibria, 15(5), 483–499(1994).

    Google Scholar 

  60. The SGTE substance database, version 1994, SGTE (Scientific Group Thermodata Europe), Grenoble, France, 1994.

  61. N. Kinomura and N. Kumada, “Preparation of Bismuth Oxides with Mixed Valence from Hydrated Sodium Bismuth Oxide,”Mater. Res. Bull., 30(2), 129–134(1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risold, D., Hallstedt, B., Gauckler, L.J. et al. The bismuth-oxygen system. JPE 16, 223–234 (1995). https://doi.org/10.1007/BF02667306

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667306

Keywords

Navigation