Skip to main content
Log in

Role of organic osmolytes in adaptation of renal cells to high osmolality

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Atherton, J.C., Green, R., Thomas, S. 1970. Effects of 0.9% saline infusion on urinary and renal tissue composition in the hydropaenic, normal, and hydrated conscious rat.J. Physiol. (London) 210:45–71

    Google Scholar 

  • Bagnasco, S., Balaban, R., Fales, H., Yang, Y.-M., Burg, M. 1986. Predominant osmotically active organic solutes in rat and rabbit renal medullas.J. Biol. Chem. 261:5872–5877

    PubMed  Google Scholar 

  • Bagnasco, S., Uchida, S., Balaban, R., Kador, P., Burg, M. 1987. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl.Proc. Natl. Acad. Sci. USA 84:1718–1720

    PubMed  Google Scholar 

  • Bagnasco, S.M., Murphy, H.R., Bedford, J.J., Burg, M.B. 1988. Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux.Am. J. Physiol. 254:C788-C792

    PubMed  Google Scholar 

  • Balaban, R.S., Knepper, M.A. 1983. Nitrogen 14 nuclear magnetic resonance spectroscopy of mammalian tissues.Am. J. Physiol. 245:C439-C444

    PubMed  Google Scholar 

  • Baldwin, J.J., Cornatzer, W.E. 1968. Rat kidney glycerylphosphorylcholine diesterase.Biochim. Biophys. Acta 164:195–204

    PubMed  Google Scholar 

  • Bedford, J.J., Bagnasco, S.M., Kador, P.F., Harris, H.W., Burg, M.B. 1987. Characteristization and purification of a mammalian osmoregulatory protein, aldose reductase, induced in renal medullary cells by high extracellular NaCl.J. Biol. Chem. 262:14255–14259

    PubMed  Google Scholar 

  • Blumenfeld, J., Hebert, S., Heilig, C., Balschi, J., Stromski, M., Gullans, S. 1989. Organic osmolytes in inner medulla of the Brattleboro rat: Effects of ADH and dehydration.Am. J. Physiol. 256:F916-F922

    PubMed  Google Scholar 

  • Brown, A.D., Edgley, M. 1980. Osmoregulation in yeast.In: Genetic Engineering of Osmoregulation. D.W. Rains, R.C. Valentine, and A. Hollaender, editors. pp. 75. Plenum, New York—London

    Google Scholar 

  • Burg, M.B. 1988. Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu.Kidney Int. 33:635–641

    PubMed  Google Scholar 

  • Chauncey, B., Leite, M.V., Goldstein, L. 1988. Renal sorbitol accumulation and associated enzyme activities in diabetes.Enzyme 39:231–234

    PubMed  Google Scholar 

  • Clampitt, R.B., Hart, R.J. 1978. The tissue activities of some diagnostic enzymes in ten mammalian species.J. Comp. Pathol. 88:607–621

    PubMed  Google Scholar 

  • Clements, R.S., Jr., Reynertson, R. 1977. Myo-inositol metabolism in diabetes mellitus: Effect of insulin treatment.Diabetes 26:215–221

    PubMed  Google Scholar 

  • Cohen, M.A.H., Hruska, K.A., Daughaday, W.H. 1982. Free myo-inositol in canine kidney: Selective concentration in the renal medulla.Proc. Soc. Exp. Biol. Med. 169:380–385

    PubMed  Google Scholar 

  • Cowley, B.D., Jr., Ferraris, J.D., Carper, D., Burg, M.B. 1990. In vivo osmoregulation of aldose reductase mRNA, protein and sorbitol in renal medulla.Am. J. Physiol. 258:F154-F161

    PubMed  Google Scholar 

  • Dawson, R.M.C. 1955. The role of glycerylphosphorylcholine and glycerylphosphorylethanolamine in liver phospholipid metabolism.Biochem. J. 59:5–8

    PubMed  Google Scholar 

  • Eisenberg, F. 1967.d-myo-inositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis.J. Biol. Chem. 242:1375–1382

    PubMed  Google Scholar 

  • Eng, J., Berkowitz, B.A., Balaban, R.S. 1990. Renal distribution and metabolism of 2H-choline: A 2H NMR and MRI study.NMR Biomed. (in press)

  • Eveloff, J.L., Warnock, D.G. 1987. Activation of ion transport systems during cell volume regulation.Am. J. Physiol. 252:F1-F10

    PubMed  Google Scholar 

  • Garcia-Perez, A., Burg, M.B. 1990. Importance of organic osmolytes for osmoregulation by renal medullary cells.Hypertension (in press)

  • Garcia-Perez, A., Martin, B., Murphy, H.R., Uchida, S., Murer, H., Cowley, B.D., Handler, J.S., Burg, M.B. 1989. Molecular cloning of cDNA coding for kidney aldose reductase: Regulation of specific mRNA accumulation by NaCl-mediated osmotic stress.J. Biol. Chem. 264:16815–16821

    PubMed  Google Scholar 

  • Goldstein, L. 1989. Organic solute profiles and transport in the rat renal medulla.Am. J. Kidney Dis. 14:310–312

    PubMed  Google Scholar 

  • Grasdalen, H., Belton, P.S., Pryor, J.S., Rich, G.T. 1987. Quantitative proton magnetic resonance of plasma from uraemic patients during dialysis.Magn. Res. Chem. 25:811–816

    Google Scholar 

  • Grossman, E.B., Hebert, S.C. 1989. Renal inner medullary choline dehydrogenase activity: Characterization and modulation.Am. J. Physiol. 256:F107-F112

    PubMed  Google Scholar 

  • Grunewald, R.W., Kinne, R.K.H. 1989. Intracellular sorbitol content in isolated rat inner medullary collecting duct cells: Regulation by extracellular osmolality.Pfluegers Arch. 414:178–184

    Google Scholar 

  • Gullans, S.R., Blumenfield, J.D., Balschi, J.A., Kaleta, M., Brenner, R.M., Heilig, C.W., Hebert, S.C. 1988. Accumulation of major organic osmolytes in rat renal inner medulla in dehydration.Am. J. Physiol. 255:F626-F634

    PubMed  Google Scholar 

  • Haubrich, D.R., Wang, P.F.L., Wedeking, P.W. 1975. Distribution and metabolism of intravenously administered choline[methyl-3H] and synthesis in vivo of acetylcholine in various tissues of guinea pigs.J. Pharmacol. Exp. Ther. 193:246–255

    PubMed  Google Scholar 

  • Heilig, C., Stromski, M., Gullans, S. 1989. Methylamine and polyol responses to salt loading in renal inner medulla.Am. J. Physiol. 257:F1117-F1123

    PubMed  Google Scholar 

  • Heinz, F., Schlegel, F., Krause, P.H. 1975. Enzymes of fructose metabolism in human kidney.Enzyme 19:85–92

    PubMed  Google Scholar 

  • Hers, H.G. 1960.l aldose-reductase.Biochim. Biophys. Acta 37:120–126

    PubMed  Google Scholar 

  • Hoffmann, E.K. 1985. Regulatory volume decrease in Erlich ascites tumor cells: Role of inorganic ions and amino compounds.Mol. Physiol. 8:167–184

    Google Scholar 

  • Holub, B.J. 1986. Metabolism and function of myo-inositol and inositol phospholipids.Annu. Rev. Nutr. 6:563–597

    PubMed  Google Scholar 

  • Howard, C.F., Anderson, L. 1967. Metabolism of myo-inositol in animals: II. Complete catabolism of myo-inositol-14C by rat kidney slices.Arch. Biochem. Biophys. 118:332–339

    PubMed  Google Scholar 

  • Kanfer, J.N., McCartney, D.G. 1989. GPC phosphodiesterase and phosphomonoesterase activities of renal cortex and medulla of control, antidiuresis and diuresis rats.FEBS Lett. 257:348–350

    PubMed  Google Scholar 

  • Kwon, H.M., Yamauchi, A., Garcia-Perez, A., Burg, M.B., Handler, J.S. 1990a. Evidence that hypertonicity increases MDCK cell content of mRNA for the Na/myo-inositol cotransporter.Clin. Res. 38:442A

    Google Scholar 

  • Kwon, H.M., Yamauchi, A., Preston, A.S., Garcia-Perez, A., Burg, M.B., Handler, J.S. 1990b. Expression cloning of cDNA for the renal sodium/myo-inositol cotransporter.Kidney Int. 37:584

    Google Scholar 

  • Lohr, J., Acara, M. 1990. Effect of dimethylaminoethanol, an inhibitor or betaine production, on the disposition of choline in the rat kidney.J. Pharmacol. Exp. Ther. 252:154–158

    PubMed  Google Scholar 

  • Mann, P.J.G., Quastel, J.H. 1937. CXVI. The oxidation of choline by rat liver.Biochem. J. 31:869–878

    Google Scholar 

  • Mann, P.J.G., Woodward, H.E., Quastel, J.H. 1938. CXXXVIII. Hepatic oxidation of choline and arsenocholine.Biochem. J. 32:1024–1032

    Google Scholar 

  • Moriyama, T., Garcia-Perez, A., Burg, M. 1989a. Relative levels of organic osmolytes in cultured renal medullary cells.Clin. Res. 37:497A

    Google Scholar 

  • Moriyama, T., Garcia-Perez, A., Burg, M. 1989b. High extracellular NaCl stimulates synthesis of aldose reductase, an osmoregulatory protein, in renal medullary cells.Kidney Int. 35:499

    Google Scholar 

  • Moriyama, T., Garcia-Perez, A., Burg, M.B. 1989c. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells.J. Biol. Chem. 264:16810–16814

    PubMed  Google Scholar 

  • Moriyama, T., Garcia-Perez, A., Burg, M.B. 1990. High urea induces accumulation of different organic osmolytes than does high NaCl in renal medullary cells.Kidney Int. 37:586

    Google Scholar 

  • Nakanishi, T., Balaban, R.S., Burg, M.B. 1988. Survey of osmolytes in renal cell lines.Am. J. Physiol. 255:C181-C191

    PubMed  Google Scholar 

  • Nakanishi, T., Burg, M.B. 1989a. Osmoregulation of glycerophosphorylcholine content of mammalian renal cells.Am. J. Physiol. 257:C795-C801

    PubMed  Google Scholar 

  • Nakanishi, T., Burg, M.B. 1989b. Osmoregulatory fluxes of myoinositol and betaine in renal cells.Am. J. Physiol. 257:C964-C970

    PubMed  Google Scholar 

  • Nakanishi, T., Turner, R.J., Burg, M.B. 1989a. Osmoregulatory changes in myo-inositol transport by renal cells.Proc. Natl. Acad. Sci. USA 86:6002–6006

    PubMed  Google Scholar 

  • Nakanishi, T., Turner, R.J., Burg, M.B. 1989b. Osmoregulatory accumulation of betaine by MDCK cells in hyperosmotic medium involves increased betaine transport.Kidney Int. 35:499

    Google Scholar 

  • Nakanishi, T., Turner, R.J., Burg, M.B. 1990. Osmoregulation of betaine transport in mammalian renal medullary cells.Am. J. Physiol. 158:F1061-F1067

    Google Scholar 

  • Sands, J.M., Schrader, D.C. 1990. Regulation of intracellular sorbitol in microdissected rat inner medullary collecting duct segments by state of hydration.Clin. Res. 38:22A

    Google Scholar 

  • Schimassek, H., Kohl, D., Bucher, T. 1959. Glycerylphosphorylcholin, die nierensubstanz “ma-mark” von Ullrich.Biochem. Z. 331:87–97

    Google Scholar 

  • Schmolke, M., Beck, F., Guder, W. 1989. Effect of antidiuretic hormone on renal organic osmolytes in Brattleboro rats.Am. J. Physiol. 257:732–737

    Google Scholar 

  • Siebens, A., Spring, K. 1989. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells.Am. J. Physiol. 257:F937-F946

    PubMed  Google Scholar 

  • Smardo, F.M., Jr., Burg, M.B., Garcia-Perez, A. 1990. Osmotic regulation of kidney aldose reductase (AR) gene transcription.FASEB J. 4:A2096

    Google Scholar 

  • Somero, G. 1986. Protons, osmolytes, and fitness of internal milieu for protein function.Am. J. Physiol. 251:R197-R213

    PubMed  Google Scholar 

  • Uchida, S., Garcia-Perez, A., Murphy, H., Burg, M.B. 1989. Signal for induction of aldose reductase in renal medullary cells by high external NaCl.Am. J. Physiol. 256:C614-C620

    PubMed  Google Scholar 

  • Uchida, S., Green, N., Coon, H., Triche, T., Mims, S., Burg, M. 1987. High NaCl induces stable changes in phenotype and karyotype of renal cells in culture.Am. J. Physiol. 253:C230-C242

    PubMed  Google Scholar 

  • Ullrich, K.J. 1959. Glycerylphosphorylcholinumsatz und glycerylphosphorylcholindiesterase in der Saugetier-Niere.Biochem. Z. 331:98–102

    Google Scholar 

  • Wald, H., Scherzer, P., Popovtzer, M.M. 1989. Inhibition of thick ascending limb Na+-K+-ATPase activity in salt loaded rats by furosemide.Am. J. Physiol. 256:F549-F555

    PubMed  Google Scholar 

  • Wilken, D.R., McMacken, M.L., Rodriquez, A. 1970. Choline and betaine aldehyde oxidation by rat liver mitochondria.Biochim. Biophys. Acta 216:305–317

    PubMed  Google Scholar 

  • Wirthensohn, G., Beck, F., Guder, W.G. 1987. Role and regulation of glycerophosphorylcholine in rat renal papilla.Pfluegers Arch. 409:411–415

    Google Scholar 

  • Wirthensohn, G., Guder, W.G. 1982. Studies on renal choline metabolism and phosphatidylcholine synthesis.In: Biochemistry of Kidney Functions. INSERM Symposium No. 21. F. Morel, editor. pp. 119–128, Elsevier Biomedical, Amsterdam

    Google Scholar 

  • Wirthensohn, G., Lefrank, S., Schmolke, M., Guder, W. 1989. Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla.Am. J. Physiol. 256:F128-F135

    PubMed  Google Scholar 

  • Wolff, S.D., Eng, C., Balaban, R.S. 1988. NMR studies of renal phosphate metabolites in vivo: Effects of hydration and dehydration.Am. J. Physiol. 255:F581-F589

    PubMed  Google Scholar 

  • Wolff, S.D., Yancey, P.H., Stanton, T.S., Balaban, R.S. 1989. A simple HPLC method for quantitating the major organic solutes of the renal medulla.Am. J. Physiol. 256:F954-F956

    PubMed  Google Scholar 

  • Yancey, P., Clark, M., Hand, S., Bowlus, R., Somero, G. 1982. Living with water stress: Evolution of osmolyte systems.Science 217:1214–1222

    PubMed  Google Scholar 

  • Yancey, P.H. 1988. Osmotic effectors in kidneys of xeric and mesic rodents: Corticomedullary distributions and changes with water availability.J. Comp. Physiol. 158:369–380

    Google Scholar 

  • Yancey, P.H., Burg, M.B. 1989. Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis.Am. J. Physiol. 257:F602-F607

    PubMed  Google Scholar 

  • Yancey, P.H., Burg, M.B. 1990. Counteracting effects of urea and betaine in mammalian cells in culture.Am. J. Physiol. 258:R198-R204

    PubMed  Google Scholar 

  • Yancey, P.H., Burg, M.B., Bagnasco, S.M. 1990. Effects of NaCl, glucose and aldose reductase inhibitors on cloning efficiency of renal medullary cells.Am. J. Physiol. 258:C156-C163

    PubMed  Google Scholar 

  • Zablocki, K., Miller, S.P.F., Garcia-Perez, A., Burg, M.B. 1990. Role of synthesis and degradation of glycerophoshporylcholine (GPC) in its osmotic regulation by renal medullary cells.FASEB J. 4:A2059

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Perez, A., Burg, M.B. Role of organic osmolytes in adaptation of renal cells to high osmolality. J. Membrain Biol. 119, 1–13 (1991). https://doi.org/10.1007/BF01868535

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868535

Key Words

Navigation