Skip to main content
Log in

Enzyme defense against reactive oxygen derivatives. II. Erythrocytes and tumor cells

  • General and Review Articles
  • a. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The enzymatic destruction of oxidizing products produced during metabolic reduction of oxygen in the cell (such as singlet oxygen, H2O2 and OH radical) involves the concerted action of superoxide dismutase-which removes O -2 and yields H2O2-and H2O2 removing enzymes such as catalase and glutathione peroxidase. A difference in distribution or ratio of these enzymes in various tissues may result in a different reactivity of oxygen radicals.

It was found that in red blood cells superoxide dismutase and catalase are extracted in the same fraction as hemoglobin, while glutathione peroxidase appears to be “loosely” bound to the cellular structure. This suggests that in red blood cells catalase acts in series with superoxide dismutase against bursts of oxygen radicals formed from oxyhemoglobin, while glutathione & peroxidase may protect the cell membrane against low concentrations of H2O2. On the other hand, catalase activity is absent in various types of ascites tumor cells, while glutathione peroxidase and superoxide dismutase are found in the cytoplasm. However, the peroxidase/dismutase ratio is lower than in liver cells, and this may provide an explanation for the higher susceptibility of tumor cells to treatments likely to involve oxygen radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridovich, I., Acc. Chem. Res. 5, 321–326, 1972.

    Google Scholar 

  2. Rotilio, G., Calabrese, L., Finazzi Agro, A., Argento-Cerù, M. P., Autuori, F. and Mondovl, B., Biochim. Biophys. Acta, 321, 98–102, 1973.

    Google Scholar 

  3. McCord, J. M., and Fridovich, I., J. Biol. Chem. 244, 6049, 1969.

    Google Scholar 

  4. McCord, J. M., Keele, B. B. and Fridovich, I., Proc. Natl. Acad. Sci. U.S.A. 68, 1024–1027, 1971.

    Google Scholar 

  5. Fee, J. A. and Teitelbaum, H. D., Biochem. Biophys. Res. Comm. 49, 150–158, 1972.

    Google Scholar 

  6. Finazzi Agro, A., Giovagnoli, C., De Sole, P., Calabrese, L., Rotilio, G., Mondovì, B., FEBS Letters 21, 183–185, 1972.

    Google Scholar 

  7. Finazzi Agrò, A., De Sole, P., Rotilio, G. and Mondovì, B., Ital. J. Biochem. 22, 217–231, 1973.

    Google Scholar 

  8. Pederson, T. C. and Aust, S. D., Biochem. Biophys. Res. Comm. 52, 1071–1078, 1973.

    Google Scholar 

  9. Lavelle, F., Michelson, A. M. and Dimitrijevic, L. Biochem. Biophys. Res. Comm. 55, 350–357, 1973.

    Google Scholar 

  10. Weser, U. and Paschen, W., FEBS Letters 27, 248–250, 1972.

    Google Scholar 

  11. Porter, D. J. T. and Ingraham, L. L., Biochim. Biophys. Acta 334, 97–102, 1974.

    Google Scholar 

  12. Cohen, G. and Hochstein, P., Biochemistry 2, 1420–1428, 1963.

    Google Scholar 

  13. Wever, R., Oudega, B. and Van Gelder, B. F., Biochim. Biophys. Acta 302, 475–478, 1973.

    Google Scholar 

  14. Errera, M. and Forssberg, eds. Mechanism in Radiobiology, Vol. I, Academic Press, 1961.

  15. Gilbert, D. L., Gerschuman, R., Cohen, T. and Sherwood, W., J. Am. Chem. Soc. 79, 5677–5686, 1957.

    Google Scholar 

  16. Allen, J. E., Goodman, D. B. P., Besarab, A. and Rasmussen, H., Biochim. Biophys. Acta 320, 708–728, 1973.

    Google Scholar 

  17. Schowoch, G. and Passow, H. Mol. Cell. Biochem. 2, 197–218, 1973.

    Google Scholar 

  18. Klein, G. and Klein, Eva, Cancer Res. 11, 466–470, 1951.

    Google Scholar 

  19. Cavaliere, R. Ciocatto, E. C., Giovanella, B. C., Heidelberger, C., Johnson, R. O., Margottini, M., Mondovì, B., Moricca, C., and Rossi Fanelli, A., Cancer 20, 1351–1381, 1967.

    Google Scholar 

  20. Kvetina, J. and Guaitani, A., Pharmacology 2, 65–68, 1969.

    Google Scholar 

  21. Tennant, J. R. Transplantation 2, 685–694, 1964.

    Google Scholar 

  22. Nishikimi, M., Rao, N. A. and Yagi, K. Biochem. Biophys. Res. Comm. 46, 849–853, 1972.

    Google Scholar 

  23. Misra, H. P. and Fridovich, I., J. Biol. Chem. 247, 188–192, 1972.

    Google Scholar 

  24. Lück, H. in Methods of Enzymatic Analysis, 2° Ed. (ed. Bergmayer, M. U.) p. 886–888, Verlag Chemic. Acad. Press New York.

  25. Paglia, E. D. and Valentine, W. N., J. Lab. Clin. Med. 70, 158–169, 1967.

    Google Scholar 

  26. Ellman, G. L. and Callaway, E., Nature 192, 1216, 1961.

    Google Scholar 

  27. Pocker, Y. and Stone, J. T., Biochemistry 6, 628–678, 1967.

    Google Scholar 

  28. Goa, J., J. Clin. Lab. Invest. 5, 218–222, 1953.

    Google Scholar 

  29. Rossi Fanelli, A., Antonini, E. and Caputo, A., Biochim. Biophys. Acta 30, 608–615, 1958.

    Google Scholar 

  30. DeDuve, C., Acta Chem. Scand. 2, 264–273, 1948.

    Google Scholar 

  31. Horejsi, J., in Red Cell Metabolism and Function (Brewer, G. J. Ed.), pl. 9–20, Plenum Press, New York, 1970.

    Google Scholar 

  32. Hanahan, D. J., Biochim. Biophys. Acta 300, 319–340, 1973.

    Google Scholar 

  33. Hosod, S. and Natamura, W., Biochim. Biophys. Acta 222, 53–64, 1970.

    Google Scholar 

  34. Hochstein, P. and Utley, N., Mol. Pharmacol. 4, 574–579, 1968.

    Google Scholar 

  35. Misra, H. P. and Fridovich, I., J. Biol. Chem. 247, 6960–6962, 1972.

    Google Scholar 

  36. Brunori, M., Falcioni, G., Fioretti, E., Giardina, B. and Rotilio, G., Europ. J. Biochem., 53, 99–104, 1975.

    Google Scholar 

  37. Nicholls, P., Biochem. Biophys. Acta 279, 306–308, 1972.

    Google Scholar 

  38. Christophersen, B. O., Biochim. Biophys. Acta 176, 463–470, 1969.

    Google Scholar 

  39. Cohen, G. and Heikkila, R. F., J. Biol. Chem. 249, 2447–2454, 1974.

    Google Scholar 

  40. Dalton, H. J., In Cellular Control Mechanism and Cancer (ed. by P. Emmelot and O. Mühlbock) pp. 211–225, Elsevier, Amsterdam, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzi, A., Mavelli, I., Finazzi Agrò, A. et al. Enzyme defense against reactive oxygen derivatives. II. Erythrocytes and tumor cells. Mol Cell Biochem 10, 11–16 (1976). https://doi.org/10.1007/BF01731676

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01731676

Keywords

Navigation