Skip to main content
Log in

The 5′ untranslated region of PVY RNA, even located in an internal position, enables initiation of translation

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Potato virus Y (PVY) is the type member of the potyvirus group. Potyviruses, like picorna-, como-, and nepoviruses, belong to the picornavirus-like supergroup. All these viral RNAs have a VPg at their 5′ end, and for four picornaviruses and one comovirus internal initiation of translation has been reported. To know if such a translational mechanism holds true for potyviral RNAs, the 5′ nontranslated region (NTR) of PVY RNA was placed in an internal position, either by adding 91 bases upstream of the PVY 5′NTR or by inserting the PVY 5′NTR into an intercistronic region. The addition of extra bases stimulates translation in a rabbit reticulocyte lysate, and the presence of the PVY 5′NTR in the intercistronic region allows the synthesis of the second cistron. These findings strongly suggest that PVY RNA initiates translation by an internal ribosome-binding mechanism. Furthermore, the use of antisense oligodeoxynucleotides indicates that the entire 5′NTR seems to be involved in such a mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riechmann J.L., Lain S.L., and Garcia J.A., J Gen Virol73 1–16, 1992.

    Google Scholar 

  2. Jackson R.J., Howell M.T., and Kaminski A., Top Biol Sci15 477–483, 1990.

    Google Scholar 

  3. Kozak M., J Cell Biol9 5134–5142, 1989.

    Google Scholar 

  4. Ilzuka N., Kohara M., Hagino-Yamagishi K., Abe S., Komatsu T., Tago K., Arita M., and Nomoto A., J Virol63 5354–5363, 1989.

    Google Scholar 

  5. Nicholson R., Pelletier J., Le S.Y., and Sonenberg N., J Virol65 5886–5894, 1991.

    Google Scholar 

  6. Sangar D.V., Newton S.E., Rowlands D.J., and Clark B.E., Nucleic Acids Res15 3305–3315, 1987.

    Google Scholar 

  7. Kaminski A., Howell M.T., and Jackson R.J., EMBO J9 3753–3759, 1990.

    Google Scholar 

  8. Rhoads R.E., Top Biol Sci13 52–56, 1988.

    Google Scholar 

  9. Hari V., Virology112 391–399, 1981.

    Google Scholar 

  10. Levis C., Tronchet M., Meyer M., Albouy J., and Astier-Manifacier S., Virus Genes6 33–46, 1992.

    Google Scholar 

  11. Carrington J.C. and Freed D.D., J Virol34 1590–1597, 1990.

    Google Scholar 

  12. Riechmann J.L., Lain S., and Garcia J.A., Virology185 544–552, 1991.

    Google Scholar 

  13. Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G. Astier-Manifacier S., and Casse-Delbart F., J Gen Virol70 935–947, 1989.

    Google Scholar 

  14. Jefferson R.A., Kavanagh T.A., and Bevan M.W., EMBO J6 3901–3907, 1987.

    Google Scholar 

  15. Heusterspreute M., Ha Thi V., Emery S., Tournis-Gamble S., Kennedt N., and Davison J., Gene53 299–300, 1987.

    Google Scholar 

  16. Zuker M. and Stiegler P., Nucleic Acids Res9 133–148, 1981.

    Google Scholar 

  17. Chaybani R., Thesis, Université Paris VI, 1992. Etude fonctionelle des extremités 5′ et 3′ du genome du virus y de la pomme de terre: effet sur la traductibilité et potentialités d'inférence avec la multiplication virale.

  18. Sambrook J., Fritsch E.F., and Maniatis T.,Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

    Google Scholar 

  19. Jefferson R.A., Plant Mol Biol Repo5 387–405, 1987.

    Google Scholar 

  20. Newmann J.R., Morrency C.A., and Russian K.O., BioTechniques5 444–447, 1987.

    Google Scholar 

  21. Hickey E.D., Weber L.A., and Baglioni C., Proc Natl Acad Sci USA73 359–366, 1976.

    Google Scholar 

  22. Peabody D.S. and Berg P., Mol Cell Biol6 2695–2703, 1986.

    Google Scholar 

  23. Kozak M., Mol Cell Biol.7 3438–3445, 1987.

    Google Scholar 

  24. Fütterer J., Gordon K., Sanfaçon H., Bonneville J.M., and Hohn T., EMBO J9 1697–1707, 1990.

    Google Scholar 

  25. Goldbach R., Microbiol Sci4 197–202, 1987.

    Google Scholar 

  26. Golbach R. and Wellink J., Intervirology29 260–267, 1988.

    Google Scholar 

  27. Tsukiyama-Kohara K., Ilzuka N., Kohara M., and Nomoto A., J Virol66 1476–1483, 1992.

    Google Scholar 

  28. Verver J., Le Gall O., Van Kammen A., and Wellink J., J Gen Virol72 2349–2345, 1991.

    Google Scholar 

  29. Thomas A.A.M., Ernst H., Wellink J. and Vooma H.O., J Virol65 2953–2959, 1991.

    Google Scholar 

  30. Macejack D.G. and Sarnow P., Nature353 90–94, 1991.

    Google Scholar 

  31. Belsham G.J. and Lomonossoff G.P., J Gen Virol72 3109–3113, 1991.

    Google Scholar 

  32. Lawson C., Ray B.K., Dodds J.T., Grifo J.A., Abramson R.D., Merrick W.C., Betsch D.F., Weith H.L., and Thach R.E., J Biol Chem261 13979–13989, 1986.

    Google Scholar 

  33. Pelletier J. and Sonenberg N., Cell40 516–526, 1985.

    Google Scholar 

  34. Kozak M., Mol Cell Biol9 5134–5142, 1989.

    Google Scholar 

  35. Anthony D.D. and Merrick W.C., J Biol Chem266 10218–10226, 1991.

    Google Scholar 

  36. Jang S.K., Kräusslich H.G., Nicklin M.J.H., Duke G.M., Palmenverg A.C., and Wimmer E., J Virol62 2636–2643, 1988.

    Google Scholar 

  37. Jang S.K. and Wimmer E., Gene Dev4 1560–1572, 1990.

    Google Scholar 

  38. Shih D.S., Park I.W., Evans C.L., Jaynes J.M., and Palmenberg A.C., J Virol61 2033–2037, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levis, C., Astier-Manifacier, S. The 5′ untranslated region of PVY RNA, even located in an internal position, enables initiation of translation. Virus Genes 7, 367–379 (1993). https://doi.org/10.1007/BF01703392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703392

Key words

Navigation