Skip to main content
Log in

Review: Biocatalytic transformations of ferulic acid: An abundant aromatic natural product

  • Published:
Journal of Industrial Microbiology

Abstract

In this review we examine the fascinating array of microbial and enzymatic transformations of ferulic acid. Ferulic acid is an extremely abundant, preformed phenolic aromatic chemical found widely in nature. Ferulic acid is viewed as a commodity scale, renewable chemical feedstock for biocatalytic conversion to other useful aromatic chemicals. Most attention is focused on bioconversions of ferulic acid itself. Topics covered include cinnamoyl side-chain cleavage; nonoxidative decarboxylation; mechanistic details of styrene formation; purification and characterization of ferulic acid decarboxylase; conversion of ferulic acid to vanillin;O-demethylation; and reduction reactions. Biotransformations of vinylgualacol are discussed, and selected biotransformations of vanillic acid including oxidative and nonoxidative decarboxylation are surveyed. Finally, enzymatic oxidative dimerization and polymerization reactions are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott TP, LK Nakamura, TC Nelsen, HJ Gasdorf, GA Bennett and R Kleiman. 1990. Microorganisms for degrading simmondsin and related cyanogenic toxins in jojoba. Appl Microbiol Biotechnol 34: 270–273.

    Google Scholar 

  2. Agarwal UP and RH Atalla. 1990. Formation and identification of cis/trans ferulic acid in photoyellowed white spruce mechanical pulp. J Wood Chem Technol 10: 169–190.

    Google Scholar 

  3. Akin DE, RD Hartley, LL Rigsby and WH Morrison III. 1992. Phenolic acids released from bermudagrass (Cynodon dactylon) by sequential sodium hydroxide treatment in relation to biodegradation of cell types. J Sci Food Agric 58: 207–214.

    Google Scholar 

  4. Al-Farhan E, PM Keehn and R Stevenson. 1992. Dimerization of 3,4-disubstituted cinnamic acids and esters. Synthesis 959–961.

  5. Ander P, I Stoytschev and K-E Eriksson. 1987. Microbial demethoxylation/demethylation of lignin and lignin model compounds. In: Lignin Enzymic and Microbial Degradation, pp 58–62. Symposium International, Paris, Institut National de la Recherche Agronomique, 145 rue de l'Université, 75007 Paris.

  6. Ander P, I Stoytschev and K-E Eriksson. 1988. Cleavage and metabolism of methoxyl groups from vanillic and ferulic acids by brownrot and soft-rot fungl. Cellulose Chem Technol 22: 255–266.

    Google Scholar 

  7. Andreoni F, S Bernasconi, P Bestetti and M Villa. 1991. Metabolism of lignin-related compounds byRhodococcus rhodochrous: bioconversion of anisoin. Appl Microbiol Biotechnol 36: 410–415.

    Google Scholar 

  8. Andreoni V, E Galli and G Galliani. 1984. Metabolism of ferulic acid by a facultatively anaerobic strain ofPseudomonas cepacia. Syst Appl Microbiol 5: 299–254.

    Google Scholar 

  9. Angeles de la Torre M and G Gomez-Alarcon. 1991. Ferulic acid anaerobic degradation by marsh sediment microorganisms. Microbios 68: 119–127.

    Google Scholar 

  10. Antrim RL and DW Harris. 1977. Method for treatment of corn hulls. United States Patent number 4038481.

  11. Antus S, A Gottsegen, P Kolonits and H Wagner. 1989. Total synthesis of two naturally occurring neolignans of potential biological activity. Liebigs Ann Chem 593–594.

  12. Arfmann HA and WR Abraham. 1989. Microbial formation of substituted styrenes. Z Naturforschung Section C, J Biosciences 44: 765–770.

    Google Scholar 

  13. Asanoma M, K Takahashi, M Miyabe, K Yamamoto, N Yoshimi, H Mori and Y Kawazoe. 1994. Inhibitory effect of topical application of polymerized ferulic acid, a synthetic lignin, on tumor promotion in mouse skin two-stage tumorigenesis. Carcinogenesis 15: 2069–2071.

    PubMed  Google Scholar 

  14. Bassoli A, G Di Gregorio, B Rindone, S Tollari, F Chioccara and M Salmona. 1988. Peroxidase-, mixed-function oxidase- and metalcatalysed oxidation of phenylpropenoidic compounds. Gazz Chim Ital 118: 763–768.

    Google Scholar 

  15. Baumgartner J. 1973. Beitrag zur oxidation pflanzlicher phenole insbesondere der ferulasäure. Thesis Nr 4923 Diss ETH Zürich.

  16. Ben-Hayyim G, J-P Damon, J Martin-Tanguy and D Tepfer. 1994. Changing root system architecture through inhibition of putrescine and feruloyl putrescine accumulation. FEBS Lett 342: 145–148.

    PubMed  Google Scholar 

  17. Bestettyi G, E Galli, C Benigni, F Orsini and F Pelizzoni. 1989. Biotransformation of styrenes by aPseudomonas putida. Appl Microbiol Biotechnol 25: 252–256.

    Google Scholar 

  18. Blum U, BR Dalton and JR Shann. 1985. Effects of various mixtures of ferulic acid and some of its microbial products on cucumber leaf expansion and dry matter in nutrient culture. J Chem Ecol 11: 619–641.

    Google Scholar 

  19. Bull A, G Holt and M Lilly. 1982. Biotechnology. International Trends and Perspectives. Organization for Economic Co-Operation and Development. Paris.

    Google Scholar 

  20. Buswell JA, P Ander, B Pettersson and K-E Eriksson. 1979. Oxidative decarboxylation of vanillic acid bySporotrichum pulverulentum. FEBS Lett 103: 98–101.

    PubMed  Google Scholar 

  21. Buswell JA and K-E Eriksson. 1979. Aromatic ring cleavage by the white-rot fungusSporotrichum pulverulentum. FEBS Lett 104: 2589–2600.

    Google Scholar 

  22. Buswell JA, K-E Eriksson, JK Gupta, SG Hamp and I Nordh. 1982. Vanillic acid metabolism by selected soft-rot, brown-rot and whiterot fungi. Arch Microbiol 131: 366–374.

    Google Scholar 

  23. Buswell JA, K-E Eriksson and B Pettersson. 1981. Purification and partial characterization of vanillate hydroxylase (decarboxylating) fromSporotrichum pulverulentum. J Chromatogr 215: 99–108.

    Google Scholar 

  24. Cartwright NJ and RD Haworth. 1944. The constituents of natural phenolic resins. Part XIX. The oxidation of ferulic acid. J Chem Soc 535–537.

  25. Casey J and R Dobb. 1992. Microbial routes to aromatic aldehydes. Enzyme Microb Technol 14: 739–747.

    Google Scholar 

  26. Chatonnet P, D Dubourdieu, JN Boidron and M Pons. 1992. The origin of ethylphenols in wines. J Sci Food Agric 60: 165–178.

    Google Scholar 

  27. Chen SL and HJ Peppler. 1956. Conversion of cinnamaldehyde to styrene by a yeast mutant. J Biol Chem 221: 101–106.

    PubMed  Google Scholar 

  28. Chen Y and JPN Rosazza. 1994. Microbial transformation of ibuprofen by aNocardia species. Appl Environ Microbiol 60:1292–1296.

    Google Scholar 

  29. Chioccara F, S Poli, B Rindone, T Pilati, G Brunow, P Pietikäinen and H Setälä. 1993. Regio- and Diastereo-selective synthesis of dimeric lignans using oxidative coupling. Acta Chem Scand 47: 610–616.

    Google Scholar 

  30. Classen D, JT Arnason, JA Serratos, JDH Lambert, C Nozzolillo and BJR Philogène. 1990. Correlation of phenolic acid content of maize to resistance toSitophilus zeamais, the maize weevil, in CIMMYT'S collections. J Chem Ecol 16: 251–315.

    Google Scholar 

  31. Cox HHJ, JHM Houtman, HJ Doddema and W Harder. 1993. Enrichment of fungi and degradation of styrene in biofilters. Appl Microbiol Biotechnol 39: 372–376.

    Google Scholar 

  32. Crawford RL and PP Olson. 1978. Microbial catabolism of vanillate: decarboxylation to guaiacol. Appl Environ Microbiol 36: 539–543.

    PubMed  Google Scholar 

  33. Degrassi G, PP DeLaureto and CV Bruschi. 1995. Purification and characterization of ferulate andp-coumarate decarboxylase fromB. pumilus. Appl Environ Microbiol 61: 326–332.

    PubMed  Google Scholar 

  34. Devi S and MNV Prasad. 1992. Effect of ferulic acid on growth and hydrolytic enzyme activities of germinating maize seeds. J Chem Ecol 18: 1981–1990.

    Google Scholar 

  35. Dewick PM. 1989. The biosynthesis of shikimate metabolites. Natural Prod Rept 6: 263–290.

    Google Scholar 

  36. Ebenezer WJ. 1991. Colabomycin co-metabolites. Synthesis of 2880-II, a metabolite related to ferulic acid. Synth Commun 21: 351–358.

    Google Scholar 

  37. Ehmann A. 1974.N-(p-Coumaryl)-tryptamine andN-ferulyl-tryptamine in kernels ofZea mays. Phytochemistry 13: 1979–1983.

    Google Scholar 

  38. Elder DJE, P Morgan and DJ Kelly. 1992. Evidence for two differentially regulated phenylpropenoyl-coenzyme A synthase activities inRhodopseudomonas palustris. FEMS Microbiol Lett 98: 255–260.

    Google Scholar 

  39. Elias HG and JA Placios. 1985. Poly(ferulic acid) by thionyl chloride activated polycondensation. Makromol Chem 186: 1027–1045.

    Google Scholar 

  40. Enoki A, Y Yajima and MH Gold. 1981. Olefin saturation and acid reduction of 3,4-dimethoxycinnamic acid and derivatives byPhanaerochaete chrysosporium. Phytochemistry 20: 1543–1546.

    Google Scholar 

  41. Fenton TW, MM Mueller and DR Clandinin. 1978. Isomerization of some cinnamic acid derivatives. J Chromatogr 152: 517–522.

    Google Scholar 

  42. Finkle BJ, JC Lewis, JW Corse and RE Lundin. 1962. Enzyme reactions with phenolic compounds: formation of hydroxystyrenes through the decarboxylation of 4-hydroxycinnamic acids byAerobacter. J Biol Chem 237: 2926–2931.

    PubMed  Google Scholar 

  43. Fonseca A and JP Sampaio. 1992.Rhodosporidium lusitaniae sp nov, a novel homothallic basidiomycetous yeast species from Portugal that degrades phenolic compounds. Syst Appl Microbiol 15: 47–51.

    Google Scholar 

  44. Ford CW and RD Hartley. 1989. GC/MS characterization of cyclodimers fromp-coumaric and ferulic acids by photodimerization—a possible factor influencing cell wall biodegradability. J Sci Food Agric 46: 251–260.

    Google Scholar 

  45. Frías I, JM Siverio, C González, JM Trujillo and JA Pérez. 1991. Purification of a new peroxidase catalyzing the formation of lignan-type compounds. Biochem J 273: 109–113.

    PubMed  Google Scholar 

  46. Friend J. 1981. Plant phenolics, lignification and plant disease. In: Progress in Phytochemistry, vol 7 (Reinhold L, JB Harborne and T Swain. eds), pp 197–261, Pergamon Press, Oxford, UK.

    Google Scholar 

  47. Graf E. 1992. Antioxidant potential of ferulic acid. Free Radical Biol Med 3: 435–448.

    Google Scholar 

  48. Grbic-Galic D. 1985. Fermentative and oxidative transformation of ferulate by a facultatively anaerobic bacterium isolated from sewage sludge. Appl Environ Microbiol 50: 1052–2057.

    PubMed  Google Scholar 

  49. Grbic-Galic D, N Churchman-Eisel and I Mrakovic. 1990. Transformation of styrene by anaerobic consortia. J Appl Bacteriol 69: 247–260.

    PubMed  Google Scholar 

  50. Grbic-Galic D and L La Pat-Polasko. 1985.Entero cloacae DG-6: a strain that transforms methoxylated aromatics under aerobic and anaerobic conditions. Curr Microbiol 12: 321–324.

    Google Scholar 

  51. Grbic-Galic D and LY Young. 1985. Mcthane fermentation of ferulate and benzoate: anaerobic degradation pathways. Appl Environ Microbiol 50: 292–297.

    Google Scholar 

  52. Greig-Smith PW and MF Wilson. 1989. Benzene compounds useful for avian control. UK Patent 88-29167.9.

  53. Gross B, M Asther, G Corrieu and P Brunerie. 1991. Production de vanilline par bioconversion de precurseurs benzeniques. European Patent number 91401031.9.

  54. Gross GG. 1985. Biosynthesis and metabolism of phenolic acids. In: Biosynthesis and Biodegradation of Wood Components (Higuchi T, ed), pp 229–271, Academic Press, New York.

    Google Scholar 

  55. Gupta JK, P Sharma, HW Kern and H Sahm. 1990. Degradation of synthetic lignins and some lignin monomers by the yeastRhodotorula glutinis. World J Microbiol Biotechnol 6: 53–58.

    Google Scholar 

  56. Gurujeyalakshmi G and A Mahadevan. 1987. Dissimilation of ferulic acid byBacillus subtilis. Curr Microbiol 16: 69–73.

    Google Scholar 

  57. Hagedorn S and B Kaphammer. 1994. Microbial biocatalysis in the generation of flavor and fragrance chemicals. Ann Rev Microbiol 48: 773–800.

    Google Scholar 

  58. Hartada T and Y Mino. 1976. Some properties ofp-coumarate decarboxylase fromCladosporium phlei. Can J Microbiol 22: 1258–1262.

    PubMed  Google Scholar 

  59. Hartmans S, JP Smits, MJ Van der Werf, F Volkering and JAM DeBont. 1989. Metabolism of styrene oxide and 2-phenyl-ethanol in styrene-degradingXanthobacter strain 124X. Appl Environ Microbiol 55: 2850–2855.

    Google Scholar 

  60. Hartmans S, MJ Van der Werf and JAM DeBont. 1990. Degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol 56: 1347–1351.

    PubMed  Google Scholar 

  61. Hashikado Y, M Urashima, T Yoshida and J Mizutani. 1993. Decarboxylative conversion of hydroxycinnamic acids byKlebsiella oxytoca andErwinia uredovora, epiphytic bacteria ofPolymnia sonchifolia leaf, possibly associated with formation of microflora on the damaged leaves. Biosci Biotech Biochem 57: 215–219.

    Google Scholar 

  62. Hatakeyama H, E Hayashi and T Haraguchi. 1977. Biodegradation of poly(3-methoxy-4-hydroxy styrene). Polymer 18: 759–763.

    Google Scholar 

  63. Henderson MEK. 1961. The metabolism of aromatic compounds related to lignin by some Hyphomycetes and yeast-like fungi of soil. J Gen Microbiol 26: 155–165.

    PubMed  Google Scholar 

  64. Herrmann K. 1989. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. CRC Crit Rev Food Sci Nutr 28: 315–347.

    Google Scholar 

  65. Herrmann K. 1990. Significance of hydroxycinnamic compounds in food. I. Antioxidant activity—effects on the use, digestibility, and microbial spoilage in food. Chem Mikrobiol Technol Lebensm 12: 137–144.

    Google Scholar 

  66. Herzog RO and O Ripke. 1908. Notiz uber die Umwandlung von Zimtsaure in Styrol durch Schimmelpilze. Z Physiol Chem 57: 43–45.

    Google Scholar 

  67. Hinteregger C, R Leitner, M Loidl, A Ferschl and F Streichsbier. 1992. Degradation of phenol and phenolic compounds byPseudomonas putida EKII. Appl Microbiol Biotechnol 37: 252–259.

    PubMed  Google Scholar 

  68. Huang Z, L Dostal and JPN Rosazza. 1993. Microbial transformations of ferulic acid bySaccharomyces cereviseae andPseudomonas fluorescens. Appl Environ Microbiol 59: 2244–2250.

    PubMed  Google Scholar 

  69. Huang Z, L Dostal and JPN Rosazza. 1994. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol byRhodotorula rubra. J Biol Chem 268: 23594–23598.

    Google Scholar 

  70. Huang Z, L Dostal and JPN Rosazza. 1994. Purification of a ferulic acid decarboxylase fromPseudomonas fluorescens. J Bacteriol 176: 5912–5918.

    PubMed  Google Scholar 

  71. Ishikawa H, WJ Schubert and FF Nord. 1963. Investigations on lignins and lignification. XXVIII. The degradation byPolyporus versicolor andFomes fomentarius of aromatic compounds structurally related to softwood lignin. Arch Biochem Biophys 100: 140–149.

    PubMed  Google Scholar 

  72. Itoh A, T Tanahashi and N Nagakura. 1992. 6′-O-Feruloyl- and 6′-O-Sinapoyl-demethylalangisides, tetrahydroisoquinoline-mono-terpene glucosides fromAlangium platanifolium. Phytochemistry 31: 1037–1040.

    Google Scholar 

  73. Iwahara S, Y Yagi and M Tabuchi. 1981. Microbial degradation of ferulic acid. Nippon Nogeikagaku Kaishi 55: 1089–1092.

    Google Scholar 

  74. Jaminet F. 1950. Hydrocarbonic fermentation in a tolu sirup mixture. J Pharm Belg (NS) 5: 191–201.

    Google Scholar 

  75. Jurkova M and M Wurst. 1993. Biodegradation of aromatic carboxylic acids byPseudomonas mira. FEMS Microbiol Lett 111: 245–250.

    Google Scholar 

  76. Katayama Y and T Fukuzumi. 1978. Bacterial degradation of dimers structurally related to lignin. II. Initial intermediate products from dehydroconiferyl alcohol byPseudomonas putida. Mokuzai Gakkaishi 24: 643–649.

    Google Scholar 

  77. Kelley CJ, RC Harruff and M Carmack. 1976. the polyphenolic acids ofLithospermum ruderale. II. Carbon-13 nuclear magnetic resonance of Lithospermic and Rosmarinic acids. J Org Chem 41: 449–455.

    Google Scholar 

  78. Khanna P, B Rajkumar and N Jothikumar. 1992. Anoxygenic degradation of aromatic substances byRhodopseudomonas palustris. Curr Microbiol 25: 63–67.

    PubMed  Google Scholar 

  79. Kirk TK and LF Lorenz. 1973. Methoxyhydroquinone, an intermediate of vanillate catabolism byPolyporus dichrous. Appl Microbiol 26: 173–175.

    PubMed  Google Scholar 

  80. Kodaira K, Y Onishi and K Ito. 1980. An oligomerization of 2-methoxy-3-vinylphenol. Makromol Chem Commun 1: 427–431.

    Google Scholar 

  81. Korn M, R Wodarz, W Schjoknecht, H Weichardt and E Bayer. 1984. Styrene metabolism in man—Gas-chromatographic separation and mandelic-acid enantiomers in the urine of exposed persons. Arch Toxicol 55: 59–63.

    PubMed  Google Scholar 

  82. Kunisada T, H Sakagami, M Takeda, T Naoe, Y Kawazoe, H Ushijima, WEG Muller and T Kitamura. 1992. Effect of lignins on HIV-induced cytopathogenicity and myeloperoxidase activity in human myelogenous leukemic cell lines. Anticancer Res 12: 2225–2228.

    PubMed  Google Scholar 

  83. Kuo YH, PC Kuo and ST Lin. 1983. The sensitized photooxidation of methyl (E)-ferulate. Proc Natl Sci Counc, Repub China, Part B 7: 28–34.

    Google Scholar 

  84. Labuda IM, SK Goers and KA Keon. 1992. Bioconversion process for the production of vanillin. US Patent 5 128253

    Google Scholar 

  85. Labuda IM, KA Keon and SK Goers. 1993. Microbial bioconversion process for the production of vanillin. In: Progress in Flavor Precursor Studies. Analysis-Generation-Biotechnology, Proceedings of the International Conference (Schreier P and P Winterhalter, eds), pp 477–482, Allured Publishing Corporation, 362 S Schmale Road, Carol Stream, IL 60188.

    Google Scholar 

  86. Lattanzio V, V Linsalata, G Maruca, R Marullo, BB Singh and P Perrino. 1988. Preexisting phenols and resistance to aphid in cowpea. Genet Agrar 42: 461–462.

    Google Scholar 

  87. Lüdemann HD and H Nimz. 1974.13C-Kernresonanzspektren von Ligninen, 1. Die Makromolekulare Chem. 175: 2393–2407.

    Google Scholar 

  88. Lyu S-W and U Blum. 1990. Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. J Chem Ecol 16: 2429–2439.

    Google Scholar 

  89. Manitto P, P Gramatica and BM Ranzi. 1975. Stereochemistry of the decarboxylation of phenolic cinnamic acids bySaccharomyces cerevisiae. J Chem Soc, Chem Comm 1975: 442–443.

    Google Scholar 

  90. Martin-Tanguy J. 1985. The occurrence and possible function of hydroxylcinnamoyl acid amides in plants. Plant Growth Regul 3: 381–399.

    Google Scholar 

  91. Middelhoven WJ. 1993. Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. Antonie van Leeuwenhoek 63: 125–144.

    PubMed  Google Scholar 

  92. Middelhoven WJ, M Koorevaar and GW Schuur. 1992. Degradation of benzene compounds by yeasts in acidic soils. Plant and Soil 145: 37–43.

    Google Scholar 

  93. Middelhoven WJ and MD Sollewijn Gelpke. 1995. Partial conversion of cinnamic acid into styrene by growing cultures and cell-free extracts of the yeastCryptococcus elinovii. Antonie van Leeuwenhoek 67: 217–219.

    PubMed  Google Scholar 

  94. Muller HW, W Trosch and KD Kulbe. 1988. Effect of phenolic compounds on cellulose degradation on some white rot basidiomycetes. FEMS Microbiol Lett 49: 87–93.

    Google Scholar 

  95. Nakashima H, T Murakami, N Yamamoto, T Naoe, Y Kawazoe, K Konno and H Sakagami. 1992. Lignified materials as medicinal resources. V. Anti-HIV (human immunodeficiency virus) activity of some synthetic lignins. Chem Pharm Bull 40: 2102–2105.

    PubMed  Google Scholar 

  96. Nali M, B Rindone, S Tollari, V Andreoni and V Treccani. 1985. Anaerobic microbial conversion of three hydroxycinnamic acids. Experientia 41: 1351–1353.

    Google Scholar 

  97. Nazareth S and S Mavinkurve. 1986. Degradation of ferulic acid via 4-vinylguaiacol byFusarium solani (Mart) Sacc. Can J Microbiol 32: 494–497.

    Google Scholar 

  98. Nethaji M, V Pattabhi and GR Desiraju. 1988. Structure of 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid). Acta Crystallogr, Sect C: Cryst Struct Commun C44: 275–277.

    Google Scholar 

  99. Nishida A and T Fukuzumi. 1978. Formation of coniferyl alcohol from ferulic acid by the white rot fungusTrametes. Phytochemistry 17: 417–419.

    Google Scholar 

  100. Nishiyama A, H Eto, Y Tereda, M Iguchi and S Yamamura. 1983. Anodic oxidation of 4-hydroxycinnamic acids and related phenols. Chem Pharm Bull 31: 2845–2852.

    Google Scholar 

  101. Ohmiya K, M Takeuchi, W Chen, S Shimizu and H Kawakami. 1986. Anaerobic reduction of ferulic acid to dihydroferulic acid byWolinella succinogenes from cow rumen. Appl Microbiol Biotechnol 23: 274–279.

    Google Scholar 

  102. Ohta T, S Yamasaki, Y Egashira and H Sanada. 1994. Antioxidative activity of corn bran hemicellulose fragments. J Agric Food Chem 42: 653–656.

    Google Scholar 

  103. Ötük G. 1985. Degradation of ferulic acid byEscherichia coli. J Ferment Technol 63: 501–506.

    Google Scholar 

  104. Palacios JA and C Perez. 1990. Poly(ferulic acid) by oxalyl chloride activated polycondensation. New Polymeric Mater 2: 167–174.

    Google Scholar 

  105. Pometto AL III, JB Sutherland and DL Crawford. 1981.Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol. Can J Microbiol 27: 636–638.

    PubMed  Google Scholar 

  106. Pratt DE. 1992. Natural antioxidants from plant material. In: Phenolic Compounds in Food and Their Effects on Health. II. Antioxidants and Cancer Prevention. ACS Symposium Series 507 (Huang M-T, C-T Ho and CY Lee, eds), Ch 5, pp 54–71, American Chemical Society, Washington, DC.

    Google Scholar 

  107. Putman LJ, PE Laks and MS Pruner. 1989. Chemical constituents of black locust bark and their biocidal activity. Holzforschung 43: 219–224.

    Google Scholar 

  108. Rahouti M, F Seigle-Murandi, R Steiman and K-E Eriksson. 1989. Metabolism of ferulic acid byPaecilomyces variotii andPestalotia palmarum. Appl Environ Microbiol 55: 2391–2398.

    Google Scholar 

  109. Ralph J, RF Helm, S Quideau and RD Hatfield. 1992. Lignin-feruloyl ester cross-links in grasses. Part 1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymers. J Chem Soc, Perkin Trans I: 2961–2969.

    Google Scholar 

  110. Ralph J, RH Helm and S Quideau. 1992. Lignin-feruloyl ester crosslinks in grasses. Part 2. Model compound syntheses. J Chem Soc, Perkin Trans I: 2971–2980.

    Google Scholar 

  111. Renard G, J-C Guilleux, C Bore, V Malta-Valette and DA Lerner. 1992. Synthesis ofl-phenylalanine analogs byRhodotorula glutinis. Bioconversion of cinnamic acids derivatives. Biotechnol Lett 14: 673–678.

    Google Scholar 

  112. Sakagami H, T Oh-Hara, K Kohda and Y Kawazoe. 1991. Lignified materials as a potential medicinal resource. IV. Dehydrogenation polymers of some phenylpropenoids and their capacity to stimulate polymorphonuclear cell iodination. Chem Pharm Bull 39: 950–955.

    PubMed  Google Scholar 

  113. Samejima M, N Tatarazako, T Arakawa, Y Saburi and T Yoshimoto. 1987. Metabolism of 3,4-dimethoxycinnamic acid and ferulic acid by mutant strains derived fromPseudomonas sp TMY1009. Mokuzai Gakkaishi 33: 728–734.

    Google Scholar 

  114. Scheline RR 1968. Metabolism of phenolic acids by the rat intestinal microflora. Acta Pharmacol Toxicol 26: 189–205.

    Google Scholar 

  115. Seigle-Murandi F, R Steiman, M Rahouti, JL Benoit-Guyod and KEL Eriksson. 1990. Metabolism of ferulic and syringic acids by micromycetes. Microbiologica 13: 191–200.

    PubMed  Google Scholar 

  116. Shafer SR and U Blum. 1991. Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J Chem Ecol 17: 369–389.

    Google Scholar 

  117. Stead D. 1993. The effect of hydroxycinnamic acids on the growth of wine-spoilage lactic acid bacteria. J Appl Bacteriol 75: 135–141.

    Google Scholar 

  118. Strack D. 1990. Metabolism of hydroxycinnamic acid conjugates. Bull Liaison—Groupe Polyphenols (15) 1990: 55–64.

    Google Scholar 

  119. Suga T, S Ohta, K Munesada, N Ide, M Kurokawa, M Shimizu and E Ohta. 1993. Endogenous pine wood nematicidal substances in pines.Pinus massoniana, P. strobus andP. palustris. Phytochemistry 33: 1395–1401.

    Google Scholar 

  120. Sutherland JB, DL Crawford and AL Pometto III. 1983. Metabolism of cinnamic,p-coumaric and ferulic acids byStreptomyces setonii. Can J Microbiol 29: 1253–1257.

    PubMed  Google Scholar 

  121. Takei Y, K Mori and M Matsui. 1973. Synthesis ofDL-Matairesinol dimethyl ether, dehydrodimethylconidendrin and dehydrodimethylretodendrin from ferulic acid. Agr Biol Chem 37: 637–641.

    Google Scholar 

  122. Tan K-S, T Hoson, Y Masuda and S Kamisaka. 1992. Effect of ferulic andp-coumaric acids onOryza coleoptile growth and the mechanical properties of cell walls. J Plant Physiol 140: 460–465.

    Google Scholar 

  123. Tillet R and JRL Walker. 1990. Metabolism of ferulic acid by aPenicillium sp. Arch Microbiol 154: 206–208.

    Google Scholar 

  124. Toms A and JM Wood. 1970. The degradation of trans-ferulic acid byPseudomonas acidovorans. Biochemistry 9: 337–343.

    PubMed  Google Scholar 

  125. Toro GIR, GR Leather and FA Einhellig. 1988. Effects of three phenolic compounds onLemna gibba G3. J Chem Ecol 14: 845–853.

    Google Scholar 

  126. Turner JA and EL Rice. 1975. Microbial decomposition of ferulic acid in soil. J Chem Ecol 1: 41–58.

    Google Scholar 

  127. Van Boven M, S Toppet, MM Cokelaere and P Daenens. 1994. Isolation and structural identification of a new simmondsin ferulate from jojoba meal. J Agric Food Chem 42: 1118–1121.

    Google Scholar 

  128. Van Huystee RB and X Zheng. 1993. Cationic peanut peroxidase and the oxidation of ferulic acid. Phytochemistry 34: 933–939.

    Google Scholar 

  129. Von Hlasiwetz H and L Barth. 1866. Ueber einige Harze [Zersetzung-sproducte derselben durch schmelzendes Kali] Liebig's Annalen der Chemie 138: 61–76.

    Google Scholar 

  130. Wacker TL, GR Safir and CT Stephens. 1990. Effects of ferulic acid onGlomus fasciculatum and associated effects on phosphorus uptake and growth of asparagus. J Chem Ecol 16: 901–909.

    Google Scholar 

  131. Warhusrt AM, KF Clark, RA Hill, RA Holt and CA Fewson. 1994. Metabolism of styrene byRhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 60: 1137–1145.

    PubMed  Google Scholar 

  132. Watson SA. 1987. Structure and composition. In: Corn: Chemistry and Technology (Watson SA and PE Ramsted, eds), pp 53–82, American Association of Cereal Chemists, St Paul, MN.

    Google Scholar 

  133. Whited GM and DT Gibson. 1991. Separation and partial characterization of the enzyme of the toluene-4-monooxygenase catabolic pathway inPseudomonas mendocina KR1. J Bacteriol 173: 2517–2519.

    Google Scholar 

  134. Whiting GC and JG Carr. 1959. Metabolism of cinnamic acid and hydroxy-cinnamic acids byLactobacillus pastorianus varquinicus. Nature 184: 1427–1428.

    PubMed  Google Scholar 

  135. Zimmerlin A, P Wojtaszek and GP Bolwell. 1994. Synthesis of dehydrogenation polymers of ferulic acid with high specificity by a purified cell-wall peroxidase from french bean (Phaseolus Vulgaris L.). Biochem J 299: 747–753.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosazza, J.P.N., Huang, Z., Dostal, L. et al. Review: Biocatalytic transformations of ferulic acid: An abundant aromatic natural product. Journal of Industrial Microbiology 15, 457–471 (1995). https://doi.org/10.1007/BF01570016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570016

Keywords

Navigation