Skip to main content
Log in

Niobian and zincian ilmenites in syenites from Cape Ashizuri, Southwest Japan

Nb- und Zn-Ilmenite in Syeniten von Cap Ashizuri, Südwest-Japan

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Ilmenite in alkali feldspar quartz syenite from Cape Ashizuri contains up to 4.4 wt.% Nb2O5. Niobium substitutes for Ti in the octahedral site of the ilmenite structure. Substitution of Nb for Ti may involve a coupled exchange to maintain charge balance, and an exchange of 2Nb + 2Fe3+ = 3Ti + 2Fe2+ is advocated. An Fe-Ti oxide geothermometer obtained from mineral pairs of granular and lamellar intergrowths indicates a subsolidus re-equilibration temperature of 510–640 °C andfO2 between the FMQ and MW-buffers, implying that it is very undersaturated with respect to water. On the other hand, Zn-ilmenite, containing up to 5.4 wt.% ZnO, occurs in miarolitic cavities in peralkaline rhyolite which cuts the quartz syenite. The Zn-ilmenite is one of the last crystalline phases of the Ashizuri magmatic activities under volatile-rich conditions. Nb-oxides, such as fergusonite, samarskite, columbite and a pyrochlore-like mineral, are Ta- and Mn-poor, which corresponds to those of less-fractionated rocks of anorogenic alkali granite and pegmatitic granite in the continental situation. Ta- and Mn-poor Nb-oxides in F- and Li-rich alkaline felsic magmas such as the Ashizuri syenites are unusual; this may be related to a rapid emplacement and cooling of mantle-derived small-volume magma in the island are situation.

Zusammenfassung

Ilmenit in Alkalifeldspat-Quarz-Syenit von Cap Ashizuri enthält bis zu 4,4 Gew. % Nb2O5. Niob ersetzt Ti in der oktaedrischen Position der Ilmenit-Struktur. Substitution von Nb für Ti erfolgt über einen gekooppelten Austausch zum Erhalt der Ladungsgleichgewichte und hier wird der Austausch von 2Nb + 2Fe3+ = 3Ti + 2Fe2+ vorgeschlagen. Ein Fe-Ti-Oxid Geothermometer auf der Basis von Mineral-Paaren körniger und lamellarer Verwachsungen weist auf Subsolidus Re-Equilibrationstemperaturen von 510 bis 640 °C undfO2 zwischen den QFM und MW-Puffern hin. Dies bedeutet Wasser-Untersättigung. Andererseits kommt Zn-Ilmenit mit bis zu 5,4 Gew.% ZnO in miarolitischen Hohlräumen in peralkalinem Rhyolit vor, der den Quarzsyenit durchschlägt. Der Zn-Ilmenit ist einer der am spätesten gebildeten kristallinen Phasen der magmatischen Aktivitäten von Ashizuri, bei Bedingungen, die an volatilen Phasen reich sind. Nb-Oxide, wie zum Beispiel Fergusonit, Samarskit, Columbit und ein Pyrochlor-ähnliches Mineral sind Ta- und Mn-arm; dies entspricht weniger fraktionierten Gesteinen aus dem Bildungsberich anorogener Alkali-Granite und pegmatitischer Granite in einer kontinentalen Situation. Ta- und Mn-arme Nb-Oxide in F- und Li-reichen alkalischen felsischen Magmen, wie die Ashizuri Syenite, sind ungewöhnlich; dies mag mit rascher Platznahme und Abkühlung von kleinen Volumina von Magmen, die aus dem Mantel stammen, in einer Inselbogen-Situation zusammenhängen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blank H, El Goresy A, Janicke J, Nobiling R, Traxel K (1984) Partitioning of Zr and Nb between coexisting opaque phases in lunar rocks-determined by quantitative proton microprobe analysis. Earth Planet Sci Lett 68: 19–33

    Google Scholar 

  • Brown RN, Riley JF, Schultz PK (1970) Contributions to Australian mineralogy. l. A new zinc-bearing ilmenite from Broken Hill. Amdel Bull 10: 48–50

    Google Scholar 

  • Carmichael ISE (1967) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 14: 36–64

    Google Scholar 

  • Carmichael ISE, Nicholls J (1967) Iron-titanium oxides and oxygen fugacities in volcanic rocks. J Geophys Res 72: 4665–4687

    Google Scholar 

  • Černý P, Goad BD, Hawthorne FC, Chapman R (1986) Fractionation trends of the Nb-and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. Am Mineral 71: 501–517

    Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26: 115–134

    Google Scholar 

  • Frost BR, Lindsley DH (1991) Occurrence of iron-titanium oxides in igneous rocks. In:Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Rev Mineral 25:433–468

  • Gaspar JC, Wyllie PJ (1983) Ilmenite (high Mg, Mn, Nb) in the carbonatites from the Jacupiranga Complex, Brazil. Am Mineral 68: 960–971

    Google Scholar 

  • Imaoka T, Nakashima K (1994a) Chevkinite in syenites from Cape Ashizuri, Shikoku Island, Japan. N Jb Miner Mh 8: 358–366

    Google Scholar 

  • Imaoka T, Nakashima K (1994b) Fluocerite in a peralkaline rhyolite dyke from Cape Ashizuri, Shikoku Island, Southwest Japan. N Jb Miner Mh 12: 529–539

    Google Scholar 

  • Imaoka T, Nakashima K, Murakami N (1991) Gallium in A-type granites from the Cape Ashizuri, Kohchi Prefecture, Southwest Japan. J Jpn Assoc Pet Min Econ Geol 86: 354–363 (in Japanese with English abstract)

    Google Scholar 

  • Ishihara S, Tanaka T, Terashima S, Togashi S, Murao S, Kamioka H (1990) Peralkaline rhyolite dikes at the Cape Ashizuri: a new type of REE and rare metal mineral resources. Mining Geol 40: 107–115

    Google Scholar 

  • Ixer RA, Ashworth JR, Pointer CM (1987) Accessory mineralogy of the Ririwai biotite granite, Nigeria, and its albitized and greisenized facies. Geol J 22: 403–427

    Google Scholar 

  • Kaye GWC, Laby TH (1986) Tables of physical and chemical constants, 5th ed. Longman, London, 477pp

    Google Scholar 

  • Leake BE, Loolley AR, Arps CES, et al (1997) Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Min Mag 61: 295–321

    Google Scholar 

  • Maaløe S, Wyllie PJ (1975) Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions. Contrib Mineral Petrol 52: 175–191

    Google Scholar 

  • Moore RO, Griffin WL, Gurney, JJ, Cousens DR, Sie SH, Suter GF (1992) Trace element geochemistry of ilmenite megacrysts from the Monastery kimberlite, South Africa. Lithos 29: 1–18

    Google Scholar 

  • Murakami N, Imaoka T (1980) Petrochemistry of plutonic rocks from southwestern area of Shikoku, Japan - especially on the characteristic feature of plutonic rocks from Cape of Ashizuri. In:Taira A, Tashiro M (eds) Geology and paleontology of the Shimanto belt (selected papers in honor of Prof.Jiro Katto), pp 57–70 (in Japanese with English abstract)

  • Murakami N, Masuda Y (1984) Trace elements in the Tertiary igneous rocks from Cape of Ashizuri, Kohchi Prefecture, Southwest Japan. J Jpn Assoc Min Pet Econ Geol 79: 318–328

    Google Scholar 

  • Murakami N, Imaoka T (1985) Rapakivi granites from Cape of Ashizuri, Kohchi Prefecture, Southwest Japan. J Geol Soc Jpn 91: 179–194

    Google Scholar 

  • Murakami N, Kanisawa S, Ishikawa K (1983) High fluorine content of Tertiary igneous rocks from the Cape of Ashizuri, Kohchi Prefecture, Southwest Japan. J Jpn Assoc Min Pet Econ Geol 78: 497–504

    Google Scholar 

  • Murakami N, Imaoka T, Uozumi S (1989) Ring complex of the Cape of Ashizuri, and its mode of emplacement, Kohchi Prefecture, Southwest Japan. Monograph No 36: In the collapsed basin. Assoc Geol Collaboration Japan, pp 115–142 (in Japanese with English abstract)

  • Nakada S, Takahashi M (1979) Regional variation in chemistry of the Miocene intermediate to felsic magmas in the Outer Zone and the Setouchi Province of Southwest Japan. Geol Soc Jpn 85: 571–582 (in Japanese with English abstract)

    Google Scholar 

  • Pearce NJG (1990) Zirconium and niobium-bearing ilmenites from the Igaliko dyke swarm, South Greenland. Min Mag 54: 585–588

    Google Scholar 

  • Platt RG, Mitchell RH (1996) Transition metal rutiles and titanates from the Deadhorse Creek diatreme complex, northwestern Ontario, Canada. Min Mag 60: 403–413

    Google Scholar 

  • Shibata K (1968) K-Ar age determinations on granitic rocks and metamorphic rocks in Japan. Rept Geol Surv Jpn 227: 73pp

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66: 1189–1201

    Google Scholar 

  • Stein G, Charvet J, Lapierre H, Fabbri O (1994) Geodynamic setting of volcano-plutonic rocks in so-called “paleo-accretionary prisms”: fore-arc activity or post-collisional magmatism? The Shimanto belt as a case study. Lithos 33: 85–107

    Google Scholar 

  • Stein G, Lapierre H, Charvet J (1996) The Miocene Ashizuri complex (SW Japan): source and magma differentiation of an alkaline plutonic assemblage in an island-arc environment. Bull Soc Géol France 167: 125–139

    Google Scholar 

  • Suwa K, Enami M, Hiraiwa I, Tang T (1987) Zn-Mn ilmenite in the Kuiqi granite from Fuzou, Fujian Province, East China. Mineral Petrol 36: 111–120

    Google Scholar 

  • Takahashi M, Aramaki S, Ishihara S (1980) Magnetite-series/ilmenite-series vs. I-type/Stype granitoids. Mining Geol [Spec Issue 8]: 13–28

    Google Scholar 

  • von Knorring O, Fadipe A (1981) On the mineralogy and geochemistry of niobium and tantalum in some granite pegmatites and alkali granites of Africa. Bull Mineral 104: 496–507

    Google Scholar 

  • Wang Y, Li J, Lu J, Fan W (1982) Geochemical mechanism of Nb-, Ta-mineralization during the late stage of granite crystallization. Geochemistry 1: 176–185

    Google Scholar 

  • Whitney DL, Hirshmann M, Miller MG (1993) Zincian ilmenite - ecandrewsite from a pelitic schist, Death Valley, California, and the paragenesis of (Zn, Fe)TiO3 solid solution in metamorphic rocks. Can Mineral 31: 425–436

    Google Scholar 

  • Wones DR (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geol 31: 191–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, K., Imaoka, T. Niobian and zincian ilmenites in syenites from Cape Ashizuri, Southwest Japan. Mineralogy and Petrology 63, 1–17 (1998). https://doi.org/10.1007/BF01162765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162765

Keywords

Navigation