Skip to main content
Log in

SAXS experiments on voids in gel-spun polyethylene fibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The morphology and properties of extracted gel-spun polyethylene fibres depend on the spinning conditions. The main structures in the extracted fibre are shish-kebabs and lamellae. Equatorial small-angle X-ray scattering (SAXS) experiments show that the former structure is very porous due to the presence of lamellar overgrowth preventing a close package of the backbone fibrils, whereas the latter structure is relatively dense. After hot-drawing, due to melting/recrystallization, both structures are transformed on a 100 nm scale into a dense structure consisting of shish-kebabs or fibrils containing a void volume fraction of about 1%, as revealed by the scattering power of equatorial SAXS experiments. Moreover, a slight decrease of the equatorial intensity especially at the smallest angles after treating the hot-drawn fibres with paraffin oil, points to a small contribution of multiple scattering to the equatorial scattering. This implies the presence of a superstructure of not too closely packed macrofibrils. SAXS measurements of strained ultra-high-strength polyethylene fibres show that no or very little void formation is involved in the fracture mechanism. Most probably this is due to the (partly) fibrillar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory,J. Amer. Chem. Soc. 67 (1945) 2048.

    Google Scholar 

  2. A. J. Pennings,Makromol. Chem. Suppl. 2 (1979) 99.

    Google Scholar 

  3. W. O. Statton,J. Polym. Sci. 22 (1956) 385.

    Google Scholar 

  4. P. H. Hermans, D. Heikens andA. Weidinger,ibid. 35 (1959) 145.

    Google Scholar 

  5. A. N. J. Heyn,J. Appl. Phys. 26 (1955) 519.

    Google Scholar 

  6. Idem, ibid. 26 (1955) 1113.

    Google Scholar 

  7. R. Perret andW. Ruland,J. Appl. Crystallogr. 1 (1968) 308.

    Google Scholar 

  8. Idem, ibid. 2 (1969) 209.

    Google Scholar 

  9. Idem, ibid. 3 (1970) 525.

    Google Scholar 

  10. C. N. Tyson andJ. R. Marjoram,ibid. 4 (1971) 488.

    Google Scholar 

  11. A. Takaku, M. Shioya andJ. Shimuzu, in “Proceedings of the International Symposium on Fibre Science and Technology”, Hakone, 1985, p. 190.

  12. M. G. Dobb, D. J. Johnson, A. Majeed andB. P. Saville,Polymer 20 (1979) 1284.

    Google Scholar 

  13. A. M. Hindeleh, N. A. Halim andK. A. Ziq,J. Macromol. Sci. Phys. B23 (1984) 289.

    Google Scholar 

  14. S. N. Zhurkov, V. A. Zakrevskyi, V. E. Korsukov andV. S. Kuksenko,J. Polym. Sci. A-2 10 (1972) 1509.

    Google Scholar 

  15. J. H. Wendorff,Angew. Makromol. Chem. 74 (1978) 203.

    Google Scholar 

  16. Idem, Polymer 21 (1980) 553.

    Google Scholar 

  17. H. D. Noether andW. Whitney,Kolloid Z. Z. Polym. 251 (1973) 991.

    Google Scholar 

  18. H. D. Noether andH. Brody,Textile Res. J. 7 (1976) 467.

    Google Scholar 

  19. R. P. Kambour,Macromol. Rev. 7 (1973) 1.

    Google Scholar 

  20. H. R. Brown andE. J. Kramer,J. Macromol. Sci. Phys. B19 (1981) 487.

    Google Scholar 

  21. E. Parades andE. W. Fischer,Makromol. Chem. 180 (1979) 2707.

    Google Scholar 

  22. A. J. Pennings, R. J. Van Der Hooft, A. R. Postema, W. Hoogsteen andG. Ten Brinke,Polym. Bull. 16 (1986) 167.

    Google Scholar 

  23. W. Hoogsteen, G. Ten Brinke andA. J. Pennings,Polymer 28 (1987) 923.

    Google Scholar 

  24. W. Hoogsteen, A. J. Pennings andG. Ten Brinke,Colloid Polym. Sci., in press.

  25. W. Hoogsteen, G. Ten Brinke andA. J. Pennings,ibid. 266 (1988) 1003.

    Google Scholar 

  26. W. Hoogsteen, R. J. Van Der Hooft, A. R. Postema, G. Ten Brinke andA. J. Pennings,J. Mater. Sci. 23 (1988) 3459.

    Google Scholar 

  27. W. Hoogsteen, H. Kormelink, G. Eshuis, G. Ten Brinke andA. J. Pennings,ibid. 23 (1988) 3467.

    Google Scholar 

  28. G. Capaccio andI. M. Ward,Polymer 18 (1977) 967.

    Google Scholar 

  29. L. Jarecki andD. J. Meier,J. Polym. Sci. Polym. Phys. Edn 17 (1979) 1611.

    Google Scholar 

  30. J. Smook, J. C. Torfs, P. F. Van Hutten andA. J. Pennings,Polym. Bull. 2 (1980) 293.

    Google Scholar 

  31. P. F. Van Hutten, C. E. Koning andA. J. Pennings,J. Mater. Sci. 20 (1985) 1556.

    Google Scholar 

  32. J. Smook andA. J. Pennings,J. Appl. Polym. Sci. 27 (1982) 2209.

    Google Scholar 

  33. P. F. Van Hutten, C. E. Koning, J. Smook andA. J. Penning,Polymer Commun. 24 (1983) 237.

    Google Scholar 

  34. L. G. Parrett,Phys. Rev. 95 (1954) 359.

    Google Scholar 

  35. P. A. Westbrook, J. F. Fellers, M. Cakmak, J. S. Lin andR. W. Hendricks,J. Polym. Sci. Polym. Phys. Edn 21 (1983) 1913.

    Google Scholar 

  36. M. Y. Tang andJ. F. Fellers,ibid. 22 (1984) 2215.

    Google Scholar 

  37. R. Perret andW. Ruland,J. Appl. Crystallogr. 4 (1971) 444.

    Google Scholar 

  38. T. Kanamoto, A. Tsuruta, K. Tanaka, M. Takeda andR. S. Porter,Macromol. 21 (1988) 470.

    Google Scholar 

  39. J. Smook andA. J. Pennings,Colloid Polym. Sci. 262 (1984) 712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoogsteen, W., Ten Brinke, G. & Pennings, A.J. SAXS experiments on voids in gel-spun polyethylene fibres. J Mater Sci 25, 1551–1556 (1990). https://doi.org/10.1007/BF01045350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01045350

Keywords

Navigation