Skip to main content
Log in

Genetic divergence and introgressive hybridization betweenAlnus sinuata andA. crispa (Betulaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The actinorhizal genusAlnus contains numerous taxa that have been morphologically classified into different subgenera, species and subspecies. The genetic divergence has been evaluated within subg.Alnobetula between the parapatric taxaAlnus sinuata andA. crispa, using diversity of allozyme markers at 15 structural loci among 20 populations. Evidence for introgressive hybridization at the overlap of their ranges was noted in three populations. However, the width of the hybrid zone appeared tenuous. The average genetic distance derived from the comparisons of conspecific populations was much smaller than the interspecific distance (D = 0.047). This allelic divergence was also paralleled with larger amounts of allelic and genotypic diversity within and among populations ofA. sinuata, which are occupying a more heterogenous ecological niche. It is proposed that the repeated advances and retreats of the ice sheet during the Pleistocene may have promoted the divergence and allopatric evolution of these subspecies, and that secondary contact may have occurred repeatedly during the interglacial periods. The dynamic-equilibrium model would predict in such cases that narrow hybrid zones, formed at the contact of parapatric ranges, would impede gene exchange between parental taxa by selection against hybrids. The results obtained in this study seemed concordant with this hypothesis, as they were also in agreement with the existent taxonomical treatment of these taxa based on morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E., 1949: Introgressive hybridization. — New York: Wiley.

    Google Scholar 

  • Avise, J. C., Smith, M. H., 1974: Biochemical genetics of sunfish. 1. Geographic variation and subspecific intergradation in the bluegill,Lepomis macrochirus. — Evolution28: 42–56.

    Google Scholar 

  • Baker, R. J., Davis, S. K., Bradley, R. D., Hamilton, M. J., van den Bussche, R. A., 1989: Ribosomal-DNA, mitochondrial-DNA, chromosomal, and allozymic studies on a contact zone in the pocket gopher,Geomys. — Evolution43: 63–75.

    Google Scholar 

  • Barton, N. H., Hewitt, G. M., 1985: Analysis of hybrid zones. — Ann. Rev. Ecol. Syst.16: 113–148.

    Google Scholar 

  • Barton, N. H., Bengtsson, B. O., 1986: The barrier to genetic exchange between hybridizing populations. — Heredity56: 357–376.

    Google Scholar 

  • Bousquet, J., Lalonde, M., 1990: The genetics of actinorhizalBetulaceae. — InSchwintzer, C., Tjepkema, D., (Eds.): The biology ofFrankia and actinorhizal plants, pp. 239–261. — Orlando, FL: Academic Press.

    Google Scholar 

  • —,Cheliak, W. M., Lalonde, M., 1987a: Genetic diversity within and among 11 juvenile populations of green alder (Alnus crispa) in Canada. — Physiol. Plant.70: 311–318.

    Google Scholar 

  • —, —, —, 1987b: Allozyme variability in natural populations of green alder (Alnus crispa) in Québec. — Genome29: 345–352.

    Google Scholar 

  • —, —, —, 1987c: Genetic differentiation among 22 mature populations of green alder (Alnus crispa) in central Québec. — Canad. J. For. Res.17: 219–227.

    Google Scholar 

  • —, —, —, 1988: Allozyme variation within and among mature populations of speckled alder (Alnus rugosa) and relationships with green alder (A. crispa). — Amer. J. Bot.75: 1678–1686.

    Google Scholar 

  • —,Girouard, E., Strobeck, C., Dancik, B. P., Lalonde, M., 1989: Restriction fragment polymorphisms in the rDNA region among seven species ofAlnus andBetula papyrifera. — Pl. Soil118: 231–240.

    Google Scholar 

  • Copes, D. L., Beckwith, R. C., 1977: Isoenzyme identification ofPicea glauca, P. sitchensis, P. lutsii populations. — Bot. Gaz. (Chicago)138: 512–521.

    Google Scholar 

  • Crawford, D. J., 1983: Phylogenetic and analysis inferences from electrophoretic studies. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding, part A, pp. 257–287. — Amsterdam: Elsevier.

    Google Scholar 

  • Cwynar, L. C., MacDonald, G. M., 1987: Geographical variation of lodgepole pine in relation to population history. — Amer. Naturalist129: 463–469.

    Google Scholar 

  • Dancik, B. P., Yeh, F. C., 1983: Allozyme variability and evolution of lodgepole pine (Pinus contorta var.latifolia) and jack pine (P. banksiana) in Alberta. — Canad. J. Genet. Cytol.25: 57–64.

    Google Scholar 

  • Davis, M. B., 1983: Quaternary history of deciduous forests of eastern North America and Europe. — Ann. Missouri Bot. Gard.70: 550–563.

    Google Scholar 

  • Dyke, A. S., Prest, V. K., 1987: Paleography of northern North America, 18 000–5 000 years ago. Map 1702 A, scale 1: 5 000 000. — Ottawa: Geological Survey of Canada.

    Google Scholar 

  • Elston, R. C., 1971: The estimation of admixture in racial hybrids. — Ann. Hum. Genet.35: 9–17.

    PubMed  Google Scholar 

  • Furlow, J. J., 1979a: The systematics of the American species ofAlnus (Betulaceae). — Rhodora81: 1–121.

    Google Scholar 

  • —, 1979b: The systematics of the American species ofAlnus (Betulaceae). — Rhodora81: 151–248.

    Google Scholar 

  • Gottlieb, L. D., 1977: Electrophoretic evidence and plant systematics. — Ann. Missouri Bot. Gard.64: 161–180.

    Google Scholar 

  • —, 1981: Electrophoretic evidence and plant populations. — Prog. Phytochem.7: 1–46.

    Google Scholar 

  • Grant, V., 1981: Plant speciation. — New York: Columbia University Press.

    Google Scholar 

  • Hamrick, J. L., Linhart, Y. B., Mitton, J. B., 1979: Relationships between life history characteristics and electorphoretically detectable genetic variation in plants. — Ann. Rev. Ecol. Syst.10: 173–200.

    Google Scholar 

  • Hanover, J. W., Wilkinson, R. C., 1970: Chemical evidence for introgressive hybridization inPicea. — Silvae Genet.19: 17–22.

    Google Scholar 

  • Hewitt, G. M., 1988: Hybrid zones. — Natural laboratories for evolutionary studies. — Trends Ecol. Evol.3: 158–167.

    Google Scholar 

  • Ledig, F. T., 1986: Heterozygosity, heterosis, and fitness in outbreeding plants. — InSoulé, M. E., (Ed.): Conservation biology: the science of scarcity and diversity, pp. 77–104. — Sunderland, MA: Sinauer.

    Google Scholar 

  • Levin, D. A., 1975: Interspecific hybridization, heterozygosity and gene exchange inPhlox. — Evolution29: 37–51.

    Google Scholar 

  • Loveless, M. D., Hamrick, J. L., 1984: Ecological determinants of genetic structure in plant populations. — Ann. Rev. Ecol. Syst.15: 65–95.

    Google Scholar 

  • Maruyama, T., Fuerst, P. A., 1985a: Population bottlenecks and nonequilibrium models in population genetics. 2. Number of alleles in a small population that was formed by a recent bottleneck. — Genetics111: 675–689.

    PubMed  Google Scholar 

  • —, 1985b: Population bottlenecks and nonequilibrium models in population genetics. 3. Genic homozygosity in populations which experience periodic bottlenecks. — Genetics111: 691–703.

    PubMed  Google Scholar 

  • Moore, W. S., 1977: An evaluation of narrow hybrid zones in vertebrates. — Quart. Rev. Biol.52: 263–277.

    Google Scholar 

  • Motro, U., Thomson, G., 1982: On heterozygosity and the effective populations subject to size changes. — Evolution36: 1059–1066.

    Google Scholar 

  • Nei, M., 1972: Genetic distance between populations. — Amer. Naturalist106: 283–292.

    Google Scholar 

  • —, 1987: Molecular evolutionary genetics. — New York: Columbia University Press.

    Google Scholar 

  • —,Chesser, R. K., 1983: Estimation of fixation indices and gene diversities. — Ann. Hum. Genet.47: 253–259.

    PubMed  Google Scholar 

  • —,Maruyama, T., Chakraborty, R., 1975: The bottleneck effect and genetic variability in populations. — Evolution29: 1–10.

    Google Scholar 

  • Nevo, E., Beiles, A., Ben-Shlomo, R., 1984: The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. — InMani, G. S., (Ed.): Evolutionary dynamics of genetic diversity. — InLevin, S., (Ed.): Lecture notes in biomathematics 53, pp. 13–213. — New York, Berlin, Heidelberg: Springer.

    Google Scholar 

  • —, —,Krugman, T., 1988a: Natural selection of allozyme polymorphisms: a microgeographical climatic differentiation in wild emmer wheat (Triticum dicoccoides). — Theor. Appl. Genet.75: 529–538.

    Google Scholar 

  • —, —, —, 1988b: Natural selection of allozyme polymorphisms: a microgeographical differentiation by edaphic, topographical, and temporal factors in wild emmer wheat (Triticum dicoccoides). — Theor. Appl. Genet.76: 737–752.

    Google Scholar 

  • Ohta, T., 1972: Population size and rate of evolution. — J. Molec. Evol.1: 305–314.

    PubMed  Google Scholar 

  • Pollack, J. C., Dancik, B. P., 1985: Monoterpene and morphological variation and hybridization ofPinus contorta andP. banksiana in Alberta. — Canad. J. Bot.63: 201–210.

    Google Scholar 

  • Roberts, F. F., Hiorns, R. W., 1965: Methods of analysis of the genetic composition of a hybrid population. — Hum. Biol.37: 38–43.

    PubMed  Google Scholar 

  • Robson, K. A., Scagel, R. K., Maze, J., 1988: Sources of morphological variation and organization within and between populations ofBalsamorhiza sagittata. — Canad. J. Bot.66: 11–17.

    Google Scholar 

  • Simon, L., Jabaji-Hare, S., Bousquet, J., Lalonde, M., 1989: Confirmation ofFrankia species using cellular fatty acids analysis. — Syst. Appl. Microbiol.29: 436–447.

    Google Scholar 

  • Slatkin, M., 1977: Gene flow and genetic drift in a species subject to frequent local extinctions. — Theor. Popul. Biol.12: 253–262.

    PubMed  Google Scholar 

  • —, 1981: Estimating levels of gene flow in natural populations. — Genetics99: 323–335.

    Google Scholar 

  • —, 1985a: Rare alleles as indicators of gene flow. — Evolution39: 53–65.

    Google Scholar 

  • —, 1985b: Gene flow in natural populations. — Ann. Rev. Ecol. Syst.16: 393–430.

    Google Scholar 

  • —, 1987: Gene flow and the geographic structure of natural populations. — Science236: 787–792.

    PubMed  Google Scholar 

  • Smouse, P. E., Neel, J. V., 1977: Multivariate analysis of gametic disequilibrium in the Yanomama. — Genetics85: 733–752.

    PubMed  Google Scholar 

  • Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. — San Francisco: Freeman.

    Google Scholar 

  • Szmidt, A. E., El-Kassaby, Y. A., Sigurgeirsson, A., Aldèn, T., Lindgren, D., Hallgren, J.-E., 1988: Classifying seedlots ofPicea sitchensis andP. glauca in zones of introgression using restriction analysis of chloroplast DNA. — Theor. Appl. Genet.76: 841–845.

    Google Scholar 

  • Szymura, J. M., Barton, N. H., 1986: Genetic analysis of a hybrid zone between the firebellied toads,Bombina bombina andB. variegata, near Cracow in Southern Poland. — Evolution40: 1141–1159.

    Google Scholar 

  • Wheeler, N. C., Guries, R. P., 1987: A quantitative measure of introgression between lodgepole and jack pines. — Canad. J. Bot.65: 1876–1885.

    Google Scholar 

  • Yeh, F. C., Arnott, J. C., 1986: Electrophoretic and morphological differentiation ofPicea sitchensis, Picea glauca, and their hybrids. — Canad. J. For. Res.16: 791–798.

    Google Scholar 

  • Zar, J. H., 1984: Biostatistical analysis. 2nd edn. — Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bousquet, J., Cheliak, W.M., Wang, J. et al. Genetic divergence and introgressive hybridization betweenAlnus sinuata andA. crispa (Betulaceae). Pl Syst Evol 170, 107–124 (1990). https://doi.org/10.1007/BF00937853

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937853

Key words

Navigation