Skip to main content
Log in

Fluorescence techniques for probing water penetration into lipid bilayers

  • Special Topic Articles
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence spectroscopy can be used as a highly sensitive and localized probe for hydration in lipid bilayers. Water associates with the head-group region, where it participates in an interlipid network of hydrogen bonds. Deeper in the bilayer, water is contained within acyl-chain packing defects. Fluorescence methodology is available to probe both the interstitial and head-group hydration in lipid bilayers, and results are in good agreement with other techniques. Using fluorescence spectroscopic approaches, cholesterol is shown to dehydrate the acyl-chain region, while hydrating the head-group region. Membrane proteins appear to increase acyl-chain hydration at the protein-lipid interface. Overall fluorescence spectroscopic techniques may be most effective in studying the water content of lipid bilayers and especially of biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Rand (1992)Science 256, 618.

    Google Scholar 

  2. M. F. Colombo, D. C. Rau, and V. A. Parsegian (1992)Science 256, 655–659.

    Google Scholar 

  3. R. P. Rand and V. A. Parsegian (1989)Biochim. Biophys. Acta 988, 351–376.

    Google Scholar 

  4. G. C. Newman and C. Huang (1975)Biochemistry 14, 3363–3370.

    Google Scholar 

  5. D. M. Small (1967)J. Lipid Res. 8, 551–557.

    Google Scholar 

  6. B. D. Ladbrooke and D. Chapman (1969)Chem. Phys. Lipids 3, 304–356.

    Google Scholar 

  7. E. G. Finer and A. Darke (1974)Chem. Phys. Lipids 12, 1–16.

    Google Scholar 

  8. G. L. Jendrasiak and J. H. Hasty (1974)Biochim. Biophys. Acta 337, 79–91.

    Google Scholar 

  9. I. Ueda, H. S. Tseng, Y. Kaminoh, S. M. Ma, H. Kamaya, and S. H. Lin (1986)Mol. Pharmacol. 29, 582–588.

    Google Scholar 

  10. A. Sen and S. W. Hui (1988)Chem. Phys. Lipids 49, 179–184.

    Google Scholar 

  11. M. Prats, J. F. Tocanne, and J. Teissie (1987)Eur. J. Biochem. 162, 379–385.

    Google Scholar 

  12. J. Teissie, M. Prats, A. LeMassu, L. C. Stewart, and M. Kates (1990)Biochemistry 29, 59–65.

    Google Scholar 

  13. J. M. Boggs (1987)Biochim. Biophys. Acta 906, 353–404.

    Google Scholar 

  14. D. M. LeNeveu, R. P. Rand, and V. A. Parsegian (1976)Nature 259, 601–603.

    Google Scholar 

  15. G. L. Kirk, S. M. Gruner, and D. L. Stein (1984)Biochemistry 23, 1093–1102.

    Google Scholar 

  16. R. P. Rand, N. Fuller, V. A. Parsegian, and D. C. Rau (1988)Biochemistry 27, 7711–7722.

    Google Scholar 

  17. K. Raghavan, M. Rami Reddy, and M. L. Berkowitz (1992)Langmuir 8, 233–240.

    Google Scholar 

  18. S. A. Simon, T. J. McIntosh, A. D. Magid, and D. Needham (1992)Biophys. J. 61, 786–799.

    Google Scholar 

  19. S. Marcelja and N. Radic (1976)Chem. Phys. Lett. 42, 129–130.

    Google Scholar 

  20. O. H. Griffith, P. J. Dehlinger, and S. P. Van (1974)J. Membr. Biol. 15, 159–192.

    Google Scholar 

  21. D. L. Worcester and N. P. Franks (1976)J. Mol. Biol. 100, 359–378.

    Google Scholar 

  22. S. A. Simon, T. J. McIntosh, and R. Latorre (1982)Science 216, 65–67.

    Google Scholar 

  23. J. M. Smaby, A. Hermetter, P. C. Schmid, F. Paltauf, and H. L. Brockman (1983)Biochemistry 22, 5808–5813.

    Google Scholar 

  24. S. A. Simon and T. J. McIntosh (1986) inMethods in Enzymology, Vol. 127, Academic Press, pp. 511–521.

  25. A. Blume, W. Hubner, and G. Messner (1988)Biochemistry 27, 8239–8249.

    Google Scholar 

  26. C. Zannoni, A. Arcioni, and P. Cavatorta (1983)Chem. Phys. Lipids 32, 179–250.

    Google Scholar 

  27. R. Fiorini, M. Valentino, S. Wang, M. Glaser, and E. Gratton (1987)Biochemistry 26, 3864–3870.

    Google Scholar 

  28. R. E. Jacobs and S. H. White (1989)Biochemistry 28, 3421–3437.

    Google Scholar 

  29. M. M. Teeter (1991)Annu. Rev. Biophys. Biophys. Chem. 20, 577–600.

    Google Scholar 

  30. C. Ho and C. D. Stubbs (1992)Biophys. J. 63, 897–902.

    Google Scholar 

  31. I. Ueda (1991) in R. C. Aloia, C. C. Curtain, and L. M. Gordon (Eds.),Drug and Anesthetic Effects on Membrane Structure and Function, Wiley-Liss, New York, pp. 15–33.

    Google Scholar 

  32. D. W. Urry and C. Sandorfy (1991) in R. C. Aloia, C. C. Curtain, and L. M. Gordon (Eds.),Drugs and Anesthetic Effects on Membrane Structure and Function, Wiley-Liss, New York, pp. 91–131.

    Google Scholar 

  33. G. Curatola, G. Lenaz, and G. Zolese (1991) in R. C. Aloia, R. C. Curtain, and L. M. Gordon (Eds.),Drug and Anesthetic Effects on Membrane Structure and Function, Wiley-Liss, New York, pp. 35–70.

    Google Scholar 

  34. R. F. Flewelling and W. L. Hubbell (1986)Biophys. J. 49, 541–552.

    Google Scholar 

  35. A. Sen and S.-W. Hui (1988)Chem. Phys. Lipids 49, 179–184.

    Google Scholar 

  36. B. W. Williams, A. W. Scotto, and C. D. Stubbs (1990)Biochemistry 29, 3248–3255.

    Google Scholar 

  37. C. Ho, B. W. Williams, and C. D. Stubbs (1992)Biochim. Biophys. Acta 1104, 273–282.

    Google Scholar 

  38. C. Ho, B. W. Williams, M. B. Kelly, and C. D. Stubbs (1994)Biochim. Biophys. Acta 1189, 135–142.

    Google Scholar 

  39. B. W. Williams and C. D. Stubbs (1988)Biochemistry 27, 7994–7999.

    Google Scholar 

  40. C. D. Stubbs, B. W. Williams, and C. Ho (1990)Proc. SPIE Spectrosc. Biochem. 1204, 448–455.

    Google Scholar 

  41. C. D. Stubbs and B. W. Williams (1992) inTopics in Fluorescence Spectroscopy, Vol. 3, Plenum Press, New York, pp. 231–271.

    Google Scholar 

  42. C. Ho, M. B. Kelly, and C. D. Stubbs (1994)Biochim. Biophys. Acta 1193, 307–315.

    Google Scholar 

  43. S. J. Slater, C. Ho, F. J. Taddeo, M. B. Kelly, and C. D. Stubbs (1993)Biochemistry 32, 3714–3721.

    Google Scholar 

  44. R. M. Epand and B. T. Leon (1992)Biochemistry 31, 1550–1554.

    Google Scholar 

  45. A. Chattopadhyay and E. London (1988)Biochim. Biophys. Acta 938, 24–34.

    Google Scholar 

  46. Handbook of Chemistry and Physics (1994), p. E-55.

  47. L. Stryer (1966)J. Am. Chem. Soc. 88, 5708–5712.

    Google Scholar 

  48. L. Lee and G. W. Robinson (1985)J. Phys. Chem. 89, 1872–1875.

    Google Scholar 

  49. M. Kuwahara and A. S. Verkman (1988)Biophys. J. 54, 587–593.

    Google Scholar 

  50. B. Cornell (1987)J. Bioenerg. Biomembr. 19, 655–676.

    Google Scholar 

  51. B. A. Wallace (1990)Annu. Rev. Biophys. Biophys. Chem. 19, 127–157.

    Google Scholar 

  52. M. Straume and B. J. Litman (1987)Biochemistry 26, 5113–5120.

    Google Scholar 

  53. M. Straume and B. J. Litman (1987)Biochemistry 26, 5121–5126.

    Google Scholar 

  54. K. Kinosita and A. Ikegami (1984)Biochim. Biophys. Acta 769, 523–527.

    Google Scholar 

  55. M. L. Wratten, E. Gratton, M. van de Ven, and A. Sevanian (1989)Biochem. Biophys. Res. Commun. 164, 169–175.

    Google Scholar 

  56. S. Wang, J. M. Beechem, E. Gratton, and M. Glaser (1991)Biochemistry 30, 5565–5572.

    Google Scholar 

  57. R. Fiorini, E. Gratton, and G. Curatola (1989)Biochim. Biophys. Acta 1006, 198–202.

    Google Scholar 

  58. T. Parasassi, G. De Stasio, A. Miccheli, F. Bruno, F. Conti, and E. Gratton (1990)Biophys. J. 35, 65–73.

    Google Scholar 

  59. G. Zolese, E. Gratton, and G. Curatola (1990)Chem. Phys. Lipids 55, 29–39.

    Google Scholar 

  60. T. Parasassi, G. Ravagnan, O. Sapora, and E. Gratton (1992)Int. J. Radiat. Biol. 61, 791–796.

    Google Scholar 

  61. R. M. Fiorini, M. Valentino, E. Gratton, E. Bertoli, and G. Curatola (1987)Biochem. Biophys. Res. Commun. 147, 460–466.

    Google Scholar 

  62. F. Schroeder, G. Nemecz, E. Gratton, Y. Barenholz, and T. E. Thompson (1988)Biophys. Chem. 32, 57–72.

    Google Scholar 

  63. M. Valentino, M. Governa, E. Gratton, R. Fiorini, G. Curatola, and E. Bertoli (1988)FEBS Lett. 234, 451–454.

    Google Scholar 

  64. T. Parasassi, F. Conti, E. Gratton, and O. Sapora (1987)Biochim. Biophys. Acta 898, 196–201.

    Google Scholar 

  65. G. Nemecz and F. Schroeder (1988)Biochemistry 27, 7740–7749.

    Google Scholar 

  66. J. R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M. L. Johnson (1987)Biophys. Chem. 28, 35–50.

    Google Scholar 

  67. E. F. Kalb, F. Paltauf, and A. Hermetter (1989)Biophys. J. 56, 1245–1253.

    Google Scholar 

  68. R. Ghosh (1988)Biochemistry 27, 7750–7758.

    Google Scholar 

  69. M. P. Milburn and K. R. Jeffrey (1989)Biophys. J. 56, 543–549.

    Google Scholar 

  70. X. Han and R. W. Gross (1991)Biochim. Biophys. Acta 1063, 129–136.

    Google Scholar 

  71. R. E. Brown (1992)Biochim. Biophys. Acta 1113, 375–389.

    Google Scholar 

  72. M. A. Gardam, J. J. Itovitch, and J. R. Silvius (1989)Biochemistry 28, 884–893.

    Google Scholar 

  73. M. A. Gardam and J. R. Silvius (1990)Biochem. Soc. Trans. 18, 831–835.

    Google Scholar 

  74. T-B. Shin, R. Leventis, and J. R. Silvius (1991)Biochemistry 30, 7491–7497.

    Google Scholar 

  75. C. D. Stubbs, T. Kouyama, K. Kinosita, and A. Ikegami (1981)Biochemistry 20, 4257–4262.

    Google Scholar 

  76. R. A. Demel, W. S. M. Geurts van Kessel, and L. L. M. van Deenen (1972)Biochim. Biophys. Acta 266, 26–40.

    Google Scholar 

  77. P. L. Yeagle (1985)Biochim. Biophys. Acta 822, 267–287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stubbs, C.D., Ho, C. & Slater, S.J. Fluorescence techniques for probing water penetration into lipid bilayers. J Fluoresc 5, 19–28 (1995). https://doi.org/10.1007/BF00718779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00718779

Key words

Navigation