Skip to main content
Log in

The lead structure in cardiac glycosides is 5 β,14 β-androstane-3 β,14-diol

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The purpose of the present study was to determine the lead structure in cardiac glycosides at the receptor level, i.e. the minimal structural requirement for specific and powerful receptor recognition. Accordingly 73 digitalis-like acting steroids were characterized as to the concentration effecting half-maximum inhibition of Na,K-ATPase from human cardiac muscle under standardized turnover conditions. Since the K i value equaled the apparent K D value, KD was expressed in terms of the apparent standard Gibbs energy change ΔGo′ of steroid interaction with Na,K-ATPase. This allowed the use of the extrathermodynamic approach as a rational way of correlating in a quantitative manner, the potency and structure of the various steroidal compounds.

The results of the present analysis taken in conjunction with relevant findings reported in the literature, favour the following conclusions.

  1. 1.

    Cassaine, canrenone, prednisolone- and progesterone-3,20-bisguanylhydrazone, and chlormadinol acetate are compounds that are not congeneric with digitalis.

  2. 2.

    The butenolide ring of cardenolides or the analogous side-chains at C17β of 5β,14β-androstane-3β,14-diol are not pharmacophoric substructures, but merely amplifiers of the interaction energy of the steroid lead.

  3. 3.

    All modifications of the structure, geometry and spatial relationship between the steroid nucleus and butenolide side chain of digitoxigenin all at once weaken the close fit interaction with the steroid and butenolide binding subsites of the enzyme in such way that the cardenolide derivatives interact with the receptor binding site area in whatever orientation that will minimize the Gibbs energy of the steroid-receptor-solvent system.

  4. 4.

    The “butenolide carbonyl oxygen distance model” (Ahmed et al. 1983) for the interpretation of the differences in potency of the cardenolide derivatives describes the change in interaction energy through structural modification as a function of the entire molecule.

  5. 5.

    5β,14β-androstane-3β,14-diol, the steroid nucleus of cardiac glycosides of the digitalis type, is the minimum structure for specific receptor recognition and the key structure for inducing protein conformational change and thus Na,K-ATPase inhibition. It is also the structural requirement for maximum contributions of the butenolide substituent at C17β and the sugar substituent at C3β-OH to the overall interaction energy, i.e. this steroid nucleus is the lead structure.

  6. 6.

    The tridigitoxose side-chain at C3β-OH of digitalis glycosides can be more than isoenergetically replaced by glucose, 2′,3′-O-isopropylidene-rhamnose, digitoxose, rhamnose and 4′-deoxy-4′-amino-rhamnose (increasing order of interaction energy increments) indicating a remarkable degree of conformational adaptability of the sugar binding subsite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Na,K-ATPase:

Na+/K+-transporting ATPase (EC 3.6.1.37)

References

  • Ahmed K, Rohrer DC, Fullerton DS, Deffo T, Kitatsuji E, From AHL (1983) Interaction of (Na+,K+)-ATPases and digitalis genins. A general model for inhibitory activity. J Biol Chem 258:8092–8097

    Google Scholar 

  • Albrecht HP (1977) Synthese von Glykosiden C-3-verzweigter Cardenolide. Liebig's Ann Chem, pp 1429–1434

  • Albrecht HP, Kunz B (1975) Synthese von C-3-verzweigten Steroiden der Cardenolidreihe. Liebig's Ann Chem, pp 2216–2226

  • Anderson CM, Zucker FH, Steitz TA (1979) Space filling models of kinase clefts and conformation changes. Comparison of the surface structures of kinase enzymes implicates closing clefts in their mechanism. Science 204:375–380

    Google Scholar 

  • Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70:241–250

    Google Scholar 

  • Boeynaems JM, Dumont JE (1980) Outlines of receptor theory. Basic concepts in receptor theory. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 1–32

    Google Scholar 

  • Brown L, Thomas R (1983) Comparison of the inotropic potencies of some synthetic and naturally occurring cardiac glycosides using isolated left atrium of guinea pig. Arzueim Forsch 33: 814–817

    Google Scholar 

  • Brown L, Thomas R (1984) Comparison of the inotropic effects of some 5α-cardenolides on guinea pig left atria. Arzneim Forsch 34:572–574

    Google Scholar 

  • Brown L, Boutagy J, Thomas R (1981) Cardenolide analogues. 11. Improved method for the use of Fétizon's reagent in the synthesis of cardiac glycosides. Arzneim Forsch 31:1059–1064

    Google Scholar 

  • Brown L, Erdmann E, Thomas R (1983) Digitalis structure-activity relationship analyses. Conclusions from indirect binding studies with cardiac (Na++K+)-ATPase. Biochem Pharmacol 32: 2767–2774

    Google Scholar 

  • Carilli CT, Farley RA, Perlman DM, Cantley LC (1982) The active site structure of Na+- and K+-stimulated ATPase. Location of a specific fluorescein isothiocyanate reactive site. J Biol Chem 257:5601–5606

    Google Scholar 

  • De Pover A, Godfraind T (1976) Sensitivity to cardiac glycosides of (Na+K)ATPase prepared from human heart, guinea-pig heart and guinea-pig brain. Arch Int Pharmacodyn 221:339–341

    Google Scholar 

  • Dittrich F, Berlin P, Köpke K, Repke KRH (1983) Stereoelectronic interaction between cardiotonic steroids and Na,K-ATPase: molecular mechanism of digitalis action. In: Kleinzeller A, Bronner F (eds) Current topics in membranes and transport, vol 19. Academic Press, New York, pp 251–255

    Google Scholar 

  • Eberlein W, Heider J, Machleidt H (1974) Substitution des Butenolidringes von Herzglykosiden durch unverzweigte offenkettige π-Elektronensysteme. Chem Ber 107:1275–1284

    Google Scholar 

  • Engel J, Isaac O, Posselt K, Thiemer K, Uthemann H (1983) Synthesis of orally active cardiosteroid derivatives. Arzneim Forsch 33:1215–1218

    Google Scholar 

  • Erdmann E (1978) Vergleichende Messungen der Herzglykosid-Rezeptoraffinität und der Hemmung der (Na++K+)-ATPase durch Digitoxin, Digoxin, Methyldigoxin, Strophanthin, Proscillaridin und Meproscillarin an isolierten menschlichen Herzmuskelzellmembranen. Arzneim Forsch 28:531–535

    Google Scholar 

  • Erdmann E, Schoner W (1974) Ouabain-receptor interactions in (Na++K+)-ATPase preparations. IV. The molecular structure of different cardioactive steroids and other substances and their affinity to the glycoside receptor. Naunyn-Schmiedeberg's Arch Pharmacol 283:335–356

    Google Scholar 

  • Ferland JM (1974) Synthetic cardenolides and related products. III. Isocardenolides. Can J Chem 52:1652–1661

    Google Scholar 

  • Finotti P, Palatini P (1981) Canrenone as a partial agonist at the digitalis receptor site of sodium-potassium-activated adenosine triphosphatase. J Pharmacol Exp Ther 217:784–790

    Google Scholar 

  • Forbush III B (1983) Cardiotonic steroid binding to Na,K-ATPase. In: Kleizeller A, Bronner F (eds) Current topics in membranes and transport, vol 19. Academic Press, New York, pp 167–201

    Google Scholar 

  • Fullerton DS, Kihara M, Deffo T, Kitatsuji E, Ahmed K, Simat B, From AHL, Rohrer DC (1984) Cardiac glycosides. 1. A systematic study of digitoxigenin d-glycosides. J Med Chem 27:256–261

    Google Scholar 

  • Gelbart A, Thomas R (1978) Cardenolide analogues. 7. Synthesis and biological activity of some new steroidal guanylhydrazones. J Med Chem 21:284–288

    Google Scholar 

  • Godfraind T, Lutete DT (1979) Inhibition by digoxin and SC 4453 of (Na++K+)-ATPase prepared from human heart, guinea-pig heart and guinea-pig brain. Eur J Pharmacol 60:329–336

    Google Scholar 

  • Güntert TW, Linde HHA (1981) Chemistry and structure-activity relationships of cardioactive steroids. In: Greeff K (ed) Handbook of experimental pharmacology, vol 56/I. Springer, Berlin Heidelberg New York, pp 13–24

    Google Scholar 

  • Hintsche R, Megges R, Pfeiffer D, Portius HJ, Schönfeld W, Repke KRH (1985) Biologic potency and solution conformation of cardenolides determined by a new 1H NMR method. Eur J Med Chem 20:9–15

    Google Scholar 

  • Huang WH, Askari A (1980) Ouabain-induced changes in the tertiary and the quaternary conformations of (Na++K+)-activated adenosine triphosphatase. Mol Pharmacol 18:53–56

    Google Scholar 

  • Jarreau FX, Koenig JJ, Fénard S (1983) A new inotropic aminosteroid: LND 623. J Mol Cell Cardiol 15:Supp 2, Abstr 44

  • Kahn JB, Van Atta RA, Johnson GL (1963) Some effects of cassaine on cardiovascular dynamics in the dog. J Pharmacol Exp Ther 142:215–222

    Google Scholar 

  • Kim RS, LaBella FS, Zunza H, Zunza F, Templeton JF (1980) Progesterone derivatives that bind to the digitalis receptor: structure-activity relationships. Mol Pharmacol 18:402–405

    Google Scholar 

  • Kroneberg G (1969) Synthetische Verbindungen mit Digitalisähnlicher Wirkung. Naunyn-Schmiedeberg's Arch Pharmacol 263:46–59

    Google Scholar 

  • Kubinyi H (1979) Lipophilicity and drug activity. In: Jucker E (ed) Progress in drug research, vol 23. Birkhäuser, Basel, pp 97–198

    Google Scholar 

  • Langen P, Repke K (1966) Inhibition of DNA- and protein-synthesis of Ehrlich ascites tumour cells in vitro by pregneneguanylhydrazones. Acta Biol Med Germ 17:K15-K19

    Google Scholar 

  • Langridge R, Ferrin TE, Kuntz ID, Connolly ML (1981) Realtime color graphics in studies of molecular interactions. Science 211:661–666

    Google Scholar 

  • Lesk A, Chotia C (1984) Mechanism of domain closure in proteins. J Mol Biol 174:175–191

    Google Scholar 

  • Lindig C, Repke K (1969) Verfahren zur Herstellung von 16α-Hydroxy-steroiden der Cardenolidreihe. DD-Pat 67 424

  • Lindig C, Repke K (1980) α,β- und β,γ-ungesättigte Lactonring-methylierte Cardenolide. J Prakt Chem 322:991–1002

    Google Scholar 

  • Lindig C, Repke KRH (1983) (20R)- und (20S)-Cardanolide. J Prakt Chem 325:574–586

    Google Scholar 

  • Malur J, Repke KRH (1970) Modelluntersuchungen über die Beteiligung einer Wasserstoff-Brückenbindung an der Komplexbildung zwischen Cardenolidverbindungen und Na++K+-aktivierter, Mg2+-abhängiger Adenosintriphosphat-Phosphohydrolase. Acta Biol Med Germ 24:K67-K72

    Google Scholar 

  • Matsui H, Schwartz A (1966) Purification and properties of a highly active ouabain-sensitive Na+,K+-dependent adenosinetriphosphatase from cardiac tissue. Biochim Biophys Acta 128:380–390

    Google Scholar 

  • McFarland JW (1971) On the understanding of drug potency. In: Jucker E (ed) Progress in drug research, vol 15. Birkhäuser, Basel, pp 123–146

    Google Scholar 

  • Megges R, Timm H, Portius HJ, Glusa E, Repke K (1978) Verfahren zur Herstellung von Proscillaridin-A-Derivaten. DD-Pat 129 795, C A 89:147194n

  • Minato H, Nagasaki T (1966) A new method for the synthesis of furan compounds. J Chem Soc (C) pp 377–379

  • Mügge A (1984) Negative inotropic effects of canrenone and potassium-canrenoate in isolated human and guinea-pig heart muscle. Naunyn-Schmiedeberg's Arch Pharmacol 325 (Suppl): R50

    Google Scholar 

  • Neumann W (1937) Vergleichende Untersuchungen über die pharmakologische Wirksamkeit von natürlichen und synthetischen Derivaten des k-Strophanthidins. Naunyn-Schmiedeberg's Arch Pharmacol 185:329–352

    Google Scholar 

  • Osman R, Weinstein H, Green JP (1979) Parameters and methods in quantitative structure-activity relationships. In: Olson EC, Christoffersen RE (eds) Computer-assisted drug design. ACS Symposium Series 112. Am Chem Soc, Washington DC, pp 21–77

    Google Scholar 

  • Petersen R, Flash H, Heinz N (1977) Darstellung und Eigenschaften einiger Glukuronide und Sulfate von Cardenoliden und Cardenolid-glykosiden. Arzneim Forsch 27:642–649

    Google Scholar 

  • Portius HJ, Repke K (1964) Versuch einer Analyse der Beziehungen zwischen chemischer Struktur und Digitalis-ähnlicher Wirksamkeit auf der Rezeptorebene. Arzneim Forsch 14:1073–1077

    Google Scholar 

  • Portius HJ, Repke K (1968) Effect of steroids of different type on transport ATPase. In: Schubert K (ed) Symposium über biochemische Aspekte der Steroidforschung. Abhandlungen der Deutschen Akademic der Wissenschaften zu Berlin, Klasse für Medizin Nr 2. Akademie-Verlag, Berlin, pp 179–183

    Google Scholar 

  • Repke KRH, Dittrich F (1980) Thermodynamics of information transfer from cardiotonic steroids to receptor transport ATPase. Trends Pharmacol Sci 1:398–402

    Google Scholar 

  • Repke K, Portius HJ (1966) Analysis of structure activity relationships in cardioactive compounds on the molecular level. In: Hanč O, Hubik J (eds) Proceedings of 25th international congress of pharmaceutical sciences. Scientiae Pharmaceuticae, vol 1. Butterworths, London, pp 39–57

    Google Scholar 

  • Repke KRH, Portius HJ (1971) Molekularbiologische Wertbestimmung von Verbindungen des Digitalistyps. Planta Medica Supp 4:66–78

    Google Scholar 

  • Repke KRH, Schönfeld W (1984) Na+,K+-ATPase as digitalis receptor. Trends Pharmacol Sci 5:393–397

    Google Scholar 

  • Repke K, Est M, Portius HJ (1965): Über die Ursache der Speciesunterschiede in der Digitalisempfindlichkeit. Biochem Pharmacol 14:1785–1802

    Google Scholar 

  • Repke KRH, Herrmann I, Portius HJ (1984a) Interaction of cardiac glycosides and Na,K-ATPase is regulated by effector-controlled equilibrium between two limit enzyme conformers. Biochem Pharmacol 33:2089–2099

    Google Scholar 

  • Repke KRH, Schönfeld W, Schönfeld R, Menke KH (1984b) Speziesunterschiede in den Rezeptor-Effektor-Parametern: ein losbares Problem der Arzneimittelentwicklung? Nova Acta Leopoldina, Neue Folge (im Druck)

  • Rohrer DC, Fullerton DS, Yoshioka K, From AHL, Ahmed K (1979) Functional receptor mapping for modified cardenolides: use of the Prophet system. In: Olsen EC, Christoffersen RE (eds) Computer-assisted drug design. ACS symposium series, no 112. American Chemical Society, Washington DC, pp 259–279

    Google Scholar 

  • Schoner W, Ilberg C, Kramer R, Seubert W (1967) On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+- und K+-activated ATPase from ox brain. Eur. J Biochem 1:334–343

    Google Scholar 

  • Schönfeld W, Schön R, Menke KH, Repke KRH (1972) Identification of conformational states of transport ATPase by kinetic analysis of ouabain binding. Acta Biol Med Germ 28:935–956

    Google Scholar 

  • Schwabe K, Tschiersch B (1982) Synthese und Eigenschaften des Digitoxigenin-3β-O-α-l-arabinofuranosids. Pharmazie 37: 827–828

    Google Scholar 

  • Smith P, Brown L, Boutagy J, Thomas R (1982) Cardenolide analogues. 14. Synthesis and biological activity of C 17β-modified derivatives of digitoxigenin. J Med Chem 25:1222–1226

    Google Scholar 

  • Teutsch G, Weber L, Page G, Shapiro EL, Herzog HL, Neri R, Collins EJ (1973) Influence of 6-azido and 6-thiocyanato substitution on progestational and corticoid activities and a structure-activity correlation in the Δ-6-6-substituted progestational series. J Med Chem 16:1370–1376

    Google Scholar 

  • Theil F, Lindig C, Repke K (1980a) Synthese von Cardenolidanalogen γ-Steroidylbutenoliden. J Prakt Chem 322:1003–1011

    Google Scholar 

  • Theil F, Lindig C, Repke K (1980b) Synthese von Cardenolidanalogen β-Steroidylcrotonsäuremethylestern. J Prakt Chem 322:1012–1020

    Google Scholar 

  • Thomas R, Boutagy J, Gelbart A (1974) Synthesis and biological activity of semisynthetic digitalis analogs. J Pharmacol Sci 63:1649–1682

    Google Scholar 

  • Thomas R, Brown L, Boutagy J, Gelbart A (1980) The digitalis receptor. Inferences from structure-activity relationship studies. Circ Res 46 (Suppl I):167–172

    Google Scholar 

  • Tobin T, Akera T, Brody SL, Ku D, Brody TM (1975) Cassaine: mechanism of inhibition of Na++K+-ATPase and relationship of this inhibition to cardiotonic action. Eur J Pharmacol 32: 133–145

    Google Scholar 

  • Vick RL (1959) Effects of some steroid and nonsteroid lactones on potassium exchange and physiological properties of the isolated perfused guinea pig ventricle. J Pharmacol Exp Ther 125: 40–48

    Google Scholar 

  • Wallick ET, Pitts BJR, Lane LK, Schwartz A (1980) A kinetic comparison of cardiac glycoside interactions with Na+,K+-ATPases from skeletal and cardiac muscle and from kidney. Arch Biochem Biophys 202:442–449

    Google Scholar 

  • Wehling M, Schwartz A, Whitmer K, Grupp G, Grupp IL, Wallick ET (1981) Interaction of chlormadinone acetate with the ouabain binding site of Na+,K+-ATPase. Mol Pharmacol 20:551–557

    Google Scholar 

  • Weiland J, Schwensow R, Megges R, Schönfeld W, Kabat MM, Kurek A, Wicha J (1984) Verfahren zur Herstellung herzwirksamer 14β-Hydroxy-androstan-glykoside. DD-Pat (in press)

  • Wicha J, Masnyk M, Schönfeld W, Repke KRH (1983) Synthesis and molecularbiological activity of the pyridine analogue of cardiotonic steroids. Heterocycles 20:231–234

    Google Scholar 

  • Wolff ME, Baxter JD, Kollman PA, Lee DL, Kuntz ID, Bloom E, Matulich DT, Morris J (1978) Nature of steroid-glucocorticoid receptor interactions: thermodynamic analysis of the binding reaction. Biochem 17:3201–3208

    Google Scholar 

  • Yamamoto S (1978) Prednisolone-3,20-bis-guanylhydrazone: the mode of interaction with rat brain sodium and potassium-activated adenosine triphosphatase. Eur J Pharmacol 50:409–418

    Google Scholar 

  • Yamamoto S, Akera T, Brody TM (1978a) Prednisolone-3,20-bis-guanylhydrazone: Na+,K+-ATPase inhibition and positive inotropic action. Eur J Pharmacol 49:121–132

    Google Scholar 

  • Yamamoto S, Akera T, Brody TM (1978b) Prednisolone-3,20-bis-guanylhydrazone: binding in vitro to sodium- and-potassium-activated adenosine triphosphatase of guinea pig heart ventricular muscle. Eur J Pharmacol 51:63–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönfeld, W., Weiland, J., Lindig, C. et al. The lead structure in cardiac glycosides is 5 β,14 β-androstane-3 β,14-diol. Naunyn-Schmiedeberg's Arch. Pharmacol. 329, 414–426 (1985). https://doi.org/10.1007/BF00496377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00496377

Key words

Navigation