Skip to main content
Log in

Oxidative d-xylose metabolism of Gluconobacter oxydans

  • Applied Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Gluconobacter oxydans subsp. suboxydans ATCC 621 oxidizes d-xylose to xylonic acid very efficiently, although it cannot grow on xylose as sole carbon source. The oxidation of xylose was found to be catalyzed by a membrane-bound xylose dehydrogenase. The xylono-γ-lactone formed in the oxidation reaction is subsequently hydrolyzed to xylonic acid by a γ-lactonase. The complete oxidation pathway of d-xylose in G. oxydans is evidently located in the periplasmic space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi O (1979) Studies on enzymes in carbohydrate metabolism of acetic acid bacteria. Nippon Nogeikagaku Kaishi 53:R77-R86

    Google Scholar 

  • Adachi O, Ameyama M (1982) d-Glucose dehydrogenase from Gluconobacter suboxydans. In: Wood WA (ed) Methods in enzymology Vol 89, Academic Press, New York, pp 159–163

    Google Scholar 

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981) d-Glucose dehydrogenase of Gluconobacter suboxydans: solubilization, purification and characterization. Agric Biol Chem 45(4):851–861

    Google Scholar 

  • Bernhauer K, Riedl-Tumova E (1950) Oxydationen mittels Essigbakterien. Biochem Z 321:26–30

    Google Scholar 

  • Brodie AF, Lipmann F (1955) Identification of a gluconolactonase. J Biol Chem 212:677–685

    Google Scholar 

  • buchert J, Viikari L, Linko M, Markkanen P (1986) Production of xylonic acid by Pseudomonas fragi. Biotechnol Lett 8:541–546

    Google Scholar 

  • Buchert J, Viikari L (1988) The role of xylonolactone in xylonic acid production by Pseudomonas fragi. Appl Microbiol Biotechnol 27:333–336

    Google Scholar 

  • Buchert J, Puls J, Poutanen K (1988) Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates. Appl Microbiol Biotechnol 28:367–372

    Google Scholar 

  • Dahms S, Russo J (1982) d-Xylose dehydrogenase. In: Wood WA (ed) Methods in enzymology Vol 89, Academic Press, New York, pp 226–228

    Google Scholar 

  • Dokter P, Frank Jzn J, Duine JA (1986) Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41. Biochem J 239:163–167

    Google Scholar 

  • Hucho F, Wallenfels K (1972) Glucono-δ-lactonase from Escherichia coli. Biochim Biophys Acta 276:176–179

    Google Scholar 

  • Jermyn MA (1960) Studies on the glucono-δ-lactonase of Pseudomonas fluorescens. Biochim Biophys Acta 37:78–92

    Google Scholar 

  • Leroux M, Tarr HLA (1963) Glucose and ribose oxidation by Pseudomonas fragi. Can J Biochem Physiol 41:1023–1034

    Google Scholar 

  • de Ley J (1961) Comparative carbohydrate metabolism and a proposal for phylogenetic relationship of the acetic acid bacteria. J Gen Microbiol 24:31–50

    Google Scholar 

  • Lien OG (1959) Determination of gluconolactone, galactonolactone and their free acids by the hydroxamate method. Anal Chem 31:1363–1366

    Google Scholar 

  • Lockwod LB, Nelson GEN (1946) The oxidation of pentoses by Pseudomonas. J Bacteriol 52:581–586

    Google Scholar 

  • Lowry OH, Rosebrough NH, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Matsushita K, Ameyama M (1982) d-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. In: Wood WA (ed), Methods in enzymology Vol 89, Academic Press, New York, London, pp 149–159

    Google Scholar 

  • van Ness JH (1981) Hydroxycarboxylic acids. In: Grayson M, Eckroth D (eds) Kirk-Othmer Encyclopedia of Chemical Technology Vol 13, John Wiley & Sons, New York, pp 99–103

    Google Scholar 

  • van Schie B (1987) The physiological function of gluconic acid production in Acinetobacter species and other gram-negative bacteria. Implications for energy conservation. PhD thesis, Delft University of Technology, The Netherlands

  • van Schie BJ, Rouwenhorst RJ, de Bont JAM, van Dijken JP, Kuenen JG (1987) An in vivo analysis of the energetics of aldose oxidation by Acinetobacter calcoaceticus. Appl Microbiol Biotechnol 26:560–567

    Google Scholar 

  • Weimberg R (1961) Pentose oxidation by Pseudomonas fragi. J Biol Chem 236:629–635

    Google Scholar 

  • Yamanaka K, Gino M, Kaneda R (1977) A specific NAD-d-xylose dehydrogenase from Arthrobacter sp. Agric Biol Chem 41(8):1493–1499

    Google Scholar 

  • Yamanaka K, Gino M (1979) Purification and properties of d-xylose dehydrogenase in bacteria. Hakkokogaku Kaishi 57(5):322–331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchert, J., Viikari, L. Oxidative d-xylose metabolism of Gluconobacter oxydans . Appl Microbiol Biotechnol 29, 375–379 (1988). https://doi.org/10.1007/BF00265822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00265822

Keywords

Navigation