Skip to main content

Advertisement

Log in

Molecular characterization of a 17q11.2 translocation in a malignant schwannoma cell line

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Malignant schwannomas are soft-tissue neoplasms that occur at increased frequency with germline alterations of the neurofibromatosis-1 (NF1) gene at 17q11.2. We report molecular and cytogenetic characterization of a malignant schwannoma cell line established from an individual affected with NF1. This cell line has a complex hyperdiploid karyotype with two cytogenetically identical der(13)t(13;17)(p11,q11.2) chromosomes. Using somatic cell hybrids, we mapped twelve chromosome-17 probes to either the der(13)t(13;17) chromosome or a small der(17) chromosome. Two chromosome-17p loci, including the p53 tumor suppressor gene, were present in the schwannoma cell line, but did not map to either of these chromosomes. Loss of heterozygosity studies indicated that the two der(13)t(13;17) chromosomes arose by duplication, presumably after the translocation event. The 17q11.2 translocation breakpoint maps distal to the NF1 gene, and may not disrupt its functioning. Although NF1 mRNA was detected in this cell line by polymerase chain reaction, Northern blot analysis revealed very little or none of the 13-kb mature NF1 transcript. This suggests that the single remaining allele of the NF1 gene contains a mutation that results in either greatly reduced transcription or message instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariel IM (1988) Tumors of the peripheral nervous system. Semin Surg Oncol 4:7–12

    Google Scholar 

  • Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851–859

    Google Scholar 

  • Barker D, Wright E, Fain P, Goldgar D, Skolnick M, Latt S, Willard H (1987) Thirty new chromosome 17 DNA markers. Cytogenet Cell Genet 46:576

    Google Scholar 

  • Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J (1992) Aberrant regulation of ras proteins in malignant tumor cells from type 1 neurofibromatosis patients. Nature 356:713–715

    Google Scholar 

  • Bell GI, Karam JH, Rutter WJ (1981) Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc Natl Acad Sci USA 78:5759–5763

    CAS  PubMed  Google Scholar 

  • Bollag G, McCormick F (1992) NF is enough GAP. Nature 356:663–664

    Google Scholar 

  • Borrow J, Black DM, Goddard AD, Yagle MK, Frischauf AM, Solomon E (1991) Construction and regional localization of clones from a NotI linking library from human chromosome 17q. Genomics 10:477–480

    Google Scholar 

  • Cawthon RM, Weiss R, Xu G, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, Gesteland R, O'Connell P, White R (1990) A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62:193–201

    Google Scholar 

  • Collins FS, O'Connell P, Ponder BAJ, Scizinger BR (1989) Progress towards identifying the neurofibromatosis (NF1) gene. Trends Genet 5:217–221

    Google Scholar 

  • Decker H-JH, Cannizzaro LA, Mendez MJ, Leong SPL, Bixenman H, Berger C, Sandberg AA (1990) Chromosomes 17 and 22 involved in marker formation in neurofibrosarcoma in von Recklinghausen disease. Hum Genet 85:337–342

    Google Scholar 

  • DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, Lowy DR (1992) Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265–273

    Google Scholar 

  • Enzinger FM, Weiss SW (1988) Soft tissue tumors. Mosby, St. Louis, Mo., pp 945

    Google Scholar 

  • Fain PR, Barker DF, Goldgar DE, Wright E, Nyugen K, Carey J, Johnson J, Kivlin J, Willard H, Mathew C, Ponder B, Skolnick M (1987) Genetic analysis of NF-vn1: identification of close flanking markers on chromosome 17. Genomics 1:340–345

    Google Scholar 

  • Fletcher JA, Kozakewich HP, Hoffer FA, Lage JM, Weidner N, Tepper R, Pinkus GS, Morton CC, Corson JM (1991) Diagnostic relevance of clonal cytogenetic aberrations in malignant soft-tissue tumors. N Engl J Med 324:436–443

    Google Scholar 

  • Fountain J, Wallace MR, Bruce MA, Scizinger BR, Menon AG, Guesella JF, Michels W, Schmidt MA, Dewald GW, Collins FS (1989) Physical mapping of a translocation breakpoint in neurofibromatosis. Science 244:1085–1087

    Google Scholar 

  • Freshney RI (1987) Culture of animal cells: a manual of basic techniques. Liss, New York, pp 329–331

    Google Scholar 

  • Ginsburg D, Konkle BA, Gill JC, Montgomery RR, Bockenstedt PL, Johnson TA, Yang AY (1989) Molecular basis of human von Willebrand disease: analysis of platelet von Willebrand factor mRNA. Proc Natl Acad Sci USA 86:3723–3727

    Google Scholar 

  • Glover TW, Stein CK, Legius E, Anderson LB, Brereton A, Johnson S (1991) Molecular and cytogenetic analysis of tumors in von Recklinghausen neurofibromatosis. Genes Chromos Cancer 3:62–70

    Google Scholar 

  • Goddard AD, Borrow J, Freemont PS, Solomon E (1991) Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254:1371–1374

    Google Scholar 

  • Hope DG, Mulvihill JJ (1981) Malignancy in neurofibromatosis. Adv Neurol 29:33–56

    Google Scholar 

  • King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel verbB-related gene in a human mammary carcinoma. Science 229:974–976

    Google Scholar 

  • Marchuk DA, Saulino AM, Tavakkol R, Swaroop M, Wallace MR, Andersen LB, Mitchell AL, Gutmann DH, Boguski M, Collins FS (1991) cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11:931–940

    Google Scholar 

  • Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM (1990) The GAP-related domain of the neurofibromatosis type I gene product interacts with ras p21. Cell 63:843–849

    Google Scholar 

  • McBride OW, Merry D, Givol D (1986) The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA 83:130–134

    Google Scholar 

  • Menon AG, Anderson KM, Riccardi VM, Chung RY, Whaley JM, Yandell DW, Farmer GE, Freiman RN, Lee JK, Li FP, Barker DF, Ledbetter DH, Kleider A, Martuza RL, Gusella JF, Scizinger BR (1990) Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci USA 87:5435–5439

    Google Scholar 

  • Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622

    Google Scholar 

  • Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708

    Google Scholar 

  • O'Connell P, Leach R, Cawthon RM, Culver M, Stevens J, Viskochil D, Fournier REK, Rich DC, Ledbetter DH, White R (1989) Two NF1 translocations map within a 600-kilobase segment of 17q11.2. Science 244:1087–1089

    Google Scholar 

  • Reynolds JE, Lytle CL, Fletcher JA, Diehl SR (1991) Molecular genetic studies of a malignant schwannoma cell line. Am J Hum Genet 49:457

    Google Scholar 

  • Riccardi VM, Eichner JE (1986) Neurofibromatosis phenotype, natural history, and pathogenesis. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Rooney DE, Czepulkowski BH (1986) Human cytogenetics and practical approaches. IRL Press, New York, pp 202–218

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KG, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:488–491

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring, Harbor, NY

    Google Scholar 

  • Skuse GR, Kosciolek BA, Rowley PT (1989) Molecular genetic analysis of tumors in von Recklinghausen neurofibromatosis: loss of heterozygosity for chromosome 17. Genes Chromos Cancer 1:36–41

    Google Scholar 

  • Slamon DJ, Clark GM (1988) Amplification of c-erbB-2 and aggressive human breast tumors? Science 240:1795–1798

    Google Scholar 

  • Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC, Copeland NO, Jenkins NA, White R, O'Connell P (1990) Deletions and a translocation interrupt cloned gene at the neurofibromatosis type 1 locus. Cell 62:187–192

    Google Scholar 

  • Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL, Brownstein BH, Collins FS (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186

    Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    CAS  PubMed  Google Scholar 

  • Weber JL, Kwitek AE, May PE, Wallace MR, Collins FS, Ledbetter DH (1990) Dinucleotide repeat polymorphisms at the D17S250 and D17S261 loci. Nucleic Acids Res 18(15):4640

    Google Scholar 

  • Willard HF, Wave JS, Skolnick MH, Schwartz CE, Powers VE, England SB (1986) Detection of restriction fragment length polymorphisms at the centromere of human chromosomes by using chromosome-specific alpha satellite DNA probes: implications for development of centromere-based genetic linkage maps. Proc Natl Acad Sci USA 83:5611–5615

    Google Scholar 

  • Williamson R, Bowcock A, Kidd KK, Pearson P, Schmidtke J, Chan HS, Chipperfield M, Cooper DN Hewitt J, Lewitter F Maidak B, Quitt M, Ricciuti F, Track R (1990) Report of the DNA committee and catalogues of cloned and mapped genes and DNA polymorphisms. Cytogenet Cell Genet 55:457–778

    Google Scholar 

  • Xu G, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R, Weiss R (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608

    Google Scholar 

  • Yagle MK, Parruti G, Xu W, Ponder BAJ, Solomon E (1990) Genetic and physical map of the von Recklinghausen neurofibromatosis (NF1) region on chromosome 17. Proc Natl Acad Sci USA 87:7255–7259

    Google Scholar 

  • Zipfel PF, Balke J, Irving SG, Kelly K, Siebenlist U (1989) Mitogenic activation of human T cells induces two closely related genes which share structural similarities with a new family of secreted factors. J Immunol 142:1582–1590

    CAS  PubMed  Google Scholar 

  • Zulch KJ (1986) Brain tumors: their biology and pathology. 3rd edn. Springer, Berlin, pp 344–356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, J.E., Fletcher, J.A., Lytle, C.H. et al. Molecular characterization of a 17q11.2 translocation in a malignant schwannoma cell line. Hum Genet 90, 450–456 (1992). https://doi.org/10.1007/BF00220476

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220476

Keywords

Navigation