Skip to main content
Log in

Flow visualization of compressible vortex structures using density gradient techniques

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Unobstructed height of schlieren light source in cutoff plane, m

c :

Blade chord, m

f :

Focal length of schlieren focusing mirror, m

C T :

Rotor thrust coefficient, T/(ϱπΩ 2 R 4)

I :

Image screen illumination, Lm/m 2

l :

Distance from vortex to shadowgraph screen, m

n b :

Number of blades

p :

Pressure,N/m 2

p :

Ambient pressure, N/m 2

r, θ, z :

Cylindrical coordinate system

r c :

Vortex core radius, m

\(\bar r\) :

Non-dimensional radial coordinate, (r/r c )

R :

Rotor radius, m

νϑ:

Tangential velocity, m/s

γ :

Specific heat ratio of air

Γ :

Circulation (strength of vortex), m 2/s

ζ :

Non-dimensional quantity, Γ 2 ρ2γp r 2c

η :

Refractive index of fluid medium

η 0 :

Refractive index of fluid medium at reference conditions

κ :

Gladstone-Dale constant, m 3/kg

ϱ :

Density, kg/m 3

ϱ :

Density at ambient conditions, kg/m 3

\(\bar \rho\) :

Non-dimensional density, (ϱ/ϱ )

σ :

Rotor solidity, (n b c/π R)

Ω :

Rotor rotational frequency, rad/s

References

  • Bagai, A.; Leishman, J. G. 1992: A study of rotor wake development and wake/body interactions in hover. Journal of the American Helicopter Society, Oct.

  • Bagai, A.; Leishman, J. G. 1992: Improved wide-field shadowgraph set-up for rotor wake visualization. Journal of the American Helicopter Society, Vol. 37, No. 3, July, pp 86–92

    Google Scholar 

  • Bairstow, L. 1939: Applied Aerodynamics, Longmans, Green & Co., Second Ed

    Google Scholar 

  • Bershader, D. 1988: Foundations of the blade-vortex interaction problem: structure and behavior of travelling compressible vortices. Report AD-A197 370, Department of Aeronautics and Astronautics, Stanford University

  • Brand, A. G.; Komerath, N. M.; McMahon, H. M. 1988: Results from a laser sheet visualization of a periodic rotor wake. AIAA paper 88-0192

  • Chigier, N. A.; Corsiglia, V. R. 1971: Tip vortices-velocity distributions. Proceedings of the American Helicopter Society 27th Annual Forum

  • Cook, C. V. 1972: The structure of the rotor blade tip vortex. AGARD CP-111

  • Dosanjh, D. S.; Gasparek, E. P.; Eskinazi, S. 1962: Decay of viscous trailing vortex. The Aeronautical Quarterly, pp 167–188

  • Felker, F. F.; Maisel, M. D.; Betzina, M. D. 1986: Full-scale tiltrotor hover performance. Journal of the American Helicopter Society 31, Vol. 2: 10–18

    Google Scholar 

  • Ghee, T. A.; Elliott, J. W. 1992: A study of the rotor wake of a small-scale rotor model in forward flight using laser light sheet flow visualization with comparisons to analytical models. Proceedings of the American Helicopter Society 48th Annual Forum, Washington DC, June 3–5

  • Hilton, W. F. 1939: The photography of airscrew sound waves. Royal Society of London, Series A, Vol CLXIX

  • Holder, D. W.; North, R. J. 1963: Schlieren methods. Notes on Applied science, No. 31, Dept. of Scientific and Industrial Research, National Physical Laboratory, HMSO, London

    Google Scholar 

  • Leighty, B. D.; Rhodes, D. B.; Franke, J. M.; Jones, S. B. 1991: A synchronous strobed laser light sheet for rotor flow visualizations. NASA TM-4266

  • Leishman, J. G.; Bagai, A. 1991: Rotor wake visualization in low speed forward flight. AIAA paper 91-3232, AIAA 9th Applied Aerodynamics Conference, Baltimore, MD

  • Light, J. S. 1989: Tip vortex geometry of a hovering helicopter rotor in ground effect. Proceedings of the 45th American helicopter society, Boston, MA, May 22–24

  • Light, J. S.; Frerking, A. A.; Norman, T. R. 1990: Application of the wide field shadowgraph technique to helicopters in forward flight. Proceedings of the 46th Annual Forum of the American Helicopter Society, Washington, DC, May 21–23

  • Mandella, M. J.; Bershader, D. 1987: Quantatative study of the compressible vortex: generation, structure and interaction with airfoils. 25th AIAA Aerospace Sciences Meeting, Reno, NV, Jan.

  • Merzkirch, W. 1981: Density sensitive flow visualization. Methods of Experimental Physics, vol 18A

  • Norman, T. R.; Light, J. S. 1987: Rotor tip vortex geometry measurements using the wide-field shadowgraph technique. Journal of the American Helicopter Society, 32, No. 2: 40–50

    Google Scholar 

  • Parthasarthy, S. P.; Cho, Y. I.; Black, L. H. 1985: Wide-field shadowgraph flow visualization of tip vortices generated by a helicopter rotor. Paper 85-1557, AIAA 18th Fluid Dynamics and Plasmadynamics and Lasers Conference, Cincinnati, Ohio

  • Piziali, R.; Trenka, A. 1970: An experimental study of blade tip vortices. Cornell Aeronautical Laboratory, Report AC-2647-S-1, Buffalo, New York

  • Spencer, R. H. 1970: Application of vortex visualization test techniques to rotor noise research. Proceedings of the American Helicopter Society 26th Annual Forum, Washington DC

  • Sullivan, J. P. 1973: An experimental investigation of vortex rings and helicopter rotor wakes using a laser doppler velocimeter. Massachusetts Institute of Technology Aerophysics Laboratory, Technical Report 183, MIT DSR No. 80038

  • Swanson, A. A.; Light, J. S. 1992: Shadowgraph flow visualization of isolated tiltrotor and rotor/wing waves. Proceedings of the 48th Annual Forum of the American Helicopter Society, Washington, DC, June 3–5

  • Scully, M. P. 1975: Computation of helicopter wake geometry and its influence of rotor harmonic airloads. MIT Report ASR: TR178-1

  • Tangler, J. L. 1977: Schlieren and noise studies of rotors in forward flight. Proceedings of the American Helicopter Society 33rd Annual Forum, Washington, DC

  • Tung, C.; Pucci, S. L.; Caradonna, F. X.; Morse, H. A. 1983: The structure of trailing vortices generated by model helicopter rotor blades. Vertica, 7, No. 1: 33–43

    Google Scholar 

  • Vatistas, G. H.; Kozel, V.; Mih, W. C. 1991: A simpler model for concentrated vortices. Experiments in Fluids 11: 73–76

    Google Scholar 

  • Vorropoulos, G.; Wendt, J. F. 1983: Laser velocimetry study of compressibility effects on the flow field of a delta wing. von Karman Institute for Fluid Dynamics, Preprint 1983-15

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagai, A., Leishman, J.G. Flow visualization of compressible vortex structures using density gradient techniques. Experiments in Fluids 15, 431–442 (1993). https://doi.org/10.1007/BF00191786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00191786

Keywords

Navigation