Skip to main content
Log in

Functional evidence that α2A-adrenoceptors are responsible for antilipolysis in human abdominal fat cells

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The effects of α2-adrenoceptor agonists (dexmedetomidine, oxymetazoline), alone or in combination with various α-adrenoceptor subtype-selective antagonists (CH-38083, idazoxan, WB4101, BRL44408, ARC-239, prazosin), on noradrenaline- and isoprenaline-induced lipolysis were investigated in human isolated abdominal subcutaneous fat cells. The rank order of potency of antagonists in preventing dexmedetomidine- and oxymetazoline-evoked suppression of isoprenaline-induced lipolysis was (pA2-values): CH-38083 (7.69 and 7.48) ≅ idazoxan (7.5 and 7.41) > BRL 44408 (7.23 and 7.19) ≅ WB 4101 (7.13 and 7.12) > prazosin (5.18 and 5.17) > ARC-239 (4.72, 4.9). While CH-38083 and idazoxan, non-subtype selective α2-adrenoceptor antagonists and BRL44408, a selective a2A-adrenoceptor antagonist as well as WB4101 potentiated the lipolytic effect of noradrenaline, ARC-239, the selective α2B-adrenoceptor antagonist failed to affect it. In addition since the α2A-adrenoceptor selective agonist, oxymetazoline concentration dependently inhibited the lipolytic effect of isoprenaline, and WB4101 and BRL44408 (a2A-adrenoceptor antagonists) antagonised the effect of oxymetazoline in a competitive manner, it is concluded that the a2A-adrenoceptor subtype is involved in antilipolysis. In addition, functional evidence was obtained that there is an interaction between α2A- and β-adrenoceptors located on the cell surface of adipocytes, through which locally released noradrenaline and/or circulating circulating adrenaline influence lipolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel I, Niddam R, Langer SZ (1990) Involvement of alpha-2 adrenergic receptor subtypes in hyperglycaemia. J Pharmacol Exp Ther 154:877 -882

    Google Scholar 

  • Arner P (1992) Adrenergic receptor function in fat cells. Am J Clin Nutr 55:228S–236S

    Google Scholar 

  • Arner P, Liljeqvist L, Ostman J (1976) Metabolism of monodiacylglycerols in subcutaneous adipose tissue of obese and normal weight subjects. Acta Med Scand 200:187–194

    Google Scholar 

  • Arner P, Wahrenberg H, Ostman J (1982) An assay for β1-adrenergic receptors in isolated human fat cells. J Lipid Res 23:717–719

    Google Scholar 

  • Arner P, Kriegholm E, Engfeldt P, Bolinder J (1990) Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest 85:893 - 898

    Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    Google Scholar 

  • Berlan M, Montastruc JL, Lafontan M (1992) Pharmacological prospects for alpha 2-adrenoceptors antagonist therapy. Trends Pharmacol Sci 13:277–282

    Google Scholar 

  • Björkhem I, Arner P, Thore A, Ostman JJ (1981) Sensitive kinetic bioluminescent assay of glycerol release from human fat cells. J Lipid Res 22:1143 -1147

    Google Scholar 

  • Blandizzi C, Dóda M, Tarkovdcs G, Del Tacca M, Vizi ES (1991) Functional evidence that acethylcholine release from Auerbach's plexus of guinea-pig ileum is modulated by α2A-adrenoceptor subtype. Eur J Pharmacol 205:311–313

    Google Scholar 

  • Blandizzi C, Tarkovdcs G, Natale G, Del Tacca M, Vizi ES (1993) Functional evidence that [3H]acetylcholine and [3H]noradrenaline release from guinea-pig ileal myenteric plexus is mediated by different presynaptic α2 adrenoceptor subtypes. J Pharmacol Exp Ther (in press)

  • Blaxall HS, Murphy TJ, Baker JC, Ray C, Bylund DB (1991) Characterization of the alpha-2 C adrenergic receptor subtype in the opossum kidney and in the OK cell line. J Pharmacol Exp Ther 259:323–329

    Google Scholar 

  • Boege F, Neumann E, Helmreich IM (1991) Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction. Eur J Biochem 199:1–15

    Google Scholar 

  • Burns TW, Langley PE (1971) Adrenergic receptors and cyclic AMP in regulation of human adipose tissue lipolysis. Ann NY Acad Sci 185:115–128

    Google Scholar 

  • Burns TW Langley PE, Terry BE, Bylund DB, Hoffman BB, Tharp MD, Lefkowitz RJ, García-Sáinz JA, Fain JN (1981) Pharmacological characterization of adrenergic receptors in human adipocytes. J Clin Invest 67:467–475

    Google Scholar 

  • Bylund DB (1985) Heterogeneity of alpha-2 adrenergic receptors. Pharmacol Biochem Behav 22:835–843

    Google Scholar 

  • Bylund DB, Ray-Prenger C (1989) Alpha-2A and alpha-2B adrenergic receptor subtypes: attenuation of cyclic AMP production in cell lines containing only one receptor subtype. J Pharmacol Exp Ther 251:640–644

    Google Scholar 

  • Bylund DB, Ray-Preninger C, Murphy TJ (1988) Alpha-2A and alpha-2B adrenergic receptor subtypes: Antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther 245:600–607

    Google Scholar 

  • Carpéné C, Galitzky J, Larrouy D, Langin D, Lafontan M (1990) Nonadrenergic sites for imidazolines are not directly involved in the alpha-2 adrenergic antilipolytic effect of UK 14304in rat adipocytes. Biochem Pharmacol 40:437–445

    Google Scholar 

  • Engfeldt P, Arner P, Kimura H, Wahrenberg H, Ostman J (1983) Determination of adrenoceptors of the alpha2-subtype on isolated human fat cells. Scand J Clin Lab Invest 43:207–215

    Google Scholar 

  • Fain JN, Garzía-Sáinz JA (1983) Adrenergic regulation of adipocyte metabolism. J Lipid Res 24:945–966

    Google Scholar 

  • Galitzky J, Mauriège P, Berlan M, Lafontan M (1989) Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonist. J Pharmacol Exp Ther 249:583–591

    Google Scholar 

  • Galitzky J, Larroy D, Berlan M, Lafontan M (1990) New tools for human fat cell alpha-2A adrenoceptor characterization. Identification on membranes and on intact cells using the new antagonist [3H]RX821002. J Pharmacol Exp Ther 252:312–319

    Google Scholar 

  • Han C, Abel PW Minneman KP (1987) alpha-1 Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature 329:333–335

    Google Scholar 

  • Harrison JK, D'Angelo DD, Zeng D, Lynch KR (1991) Pharmacological characterization of rat α2-adrenergic receptors. Mol Pharmacol 40:407–412

    Google Scholar 

  • Hellmér J, Arner P, Lundin A (1989) Automatic luminometric kinetic assay of glycerol for lipolysis studies. Anal Biochem 177:132–137

    Google Scholar 

  • Hollenga Ch, Haas M, Deinum JT, Zaagsma J (1990) Discrepancies in lipolytic activities induced by beta-adrenoceptors agonists in human and rat adipocytes. Horm Metab Res 22:17–21

    Google Scholar 

  • Kapocsi J, Somogyi GT, Ludvig N, Serfözö P, Hársing LG Jr, Woods RJ, Vizi ES (1987) Neurochemical evidence for two types of presynaptic alpha 2-adrenoceptors. Neurochem Res 12:141–147

    Google Scholar 

  • Kather H, Bieger W, Michel G, Aktories K, Jakobs KH (1985) Human fat cell lipolysis is primarily regulated by inhibitory modulators acting through distinct mechanisms. J Clin Invest 76:1559–1565

    Google Scholar 

  • Kobilka BK, Matsiu HJ, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW (1987) Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science 238:650–656

    Google Scholar 

  • Lafontan M, Berlan M (1980) Evidence for the α2- nature of the α-adrenergic receptor inhibiting lipolysis in human fat cells. Eur J Pharmacol 66:87–93

    Google Scholar 

  • Lafontan M, Berlan M (1981) Alpha-adrenergic receptors and the regulation of lipolysis in adipose tissue. Trends Pharmacol Sci 2:126–129

    Google Scholar 

  • Lafontan M, Berlan M, Villeneuve A (1983) Preponderance of alpha-2 over beta-1 adrenergic receptor sites in human fat cells is not predictive of the lipolytic effect of physiological catecholamines. J Lipid Res 24:429–440

    Google Scholar 

  • Lafontan M, Berlan M, Galitzky J, Montastruc JL (1992) Alpha-2 adrenoceptors in lipolysis: α2 antagonists and lipid-mobilizing strategies. Am J Clin Nutr 55:2195–227S

    Google Scholar 

  • Lanier SM, Downing S, Duzie E, Homcy CJ (1991) Isolation of rat genomic clones encoding subtypes of the α2-adrenergic receptor. Identification of a unique receptor subtype. J Biol Chem 266: 10470–10478

    Google Scholar 

  • Latifpour J, Kondo S, O'Hollaren B, Morita T, Weiss RM (1990) Autonomic receptors in urinary tract: Sex and age differences. J Pharmacol Exp Ther 223:606–611

    Google Scholar 

  • Lomasney JW, Lorenz W, Allen LF, King K, Regan JW, Yang-Feng TL, Caron MG, Lefkowitz RJ (1990) Expansion of the α2-adrenergic receptor family: cloning and characterization of a human α2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci USA 87:5094–5098

    Google Scholar 

  • Lönngvist F, Arner P (1989) Interactions between adenylate cyclase inhibitors and beta-adrenoceptors in isolated human fat cells. Biochem Biophys Res Commun 161:654–660

    Google Scholar 

  • Mauriége P, Galitzky J, Berlan M, Lafontan M (1987) Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest 17:156–165

    Google Scholar 

  • Mauriège P, De Pergola G, Berlan M, Lafontan M (1988) Human fat cell beta-adrenergic receptors: beta-agonist-dependent lipolytic responses and characterization of beta-adrenergic binding sites on human fat cell membranes with highly selective beta 1-antagonist. J Lipid Res 29:587–601

    Google Scholar 

  • McGrath JC (1984) alpha-Adrenoceptor antagonism by apoyohimbine and some observations on the pharmacology of alpha-adrenoceptors in the rat anococcygeus and vas deferens. Br J Pharmac 82:769–781

    Google Scholar 

  • Michel AD, Loudry DN, Whiting RL (1989) Differences between the α2-adrenoceptor in rat submaxillary gland and the α2A- and α2B-adrenoceptor subtypes. Br J Pharmacol 98:890–897

    Google Scholar 

  • Murphy TJ, Bylund DB (1988) Characterization of alpha-2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther 244:571–578

    Google Scholar 

  • Niddam R, Angel I, Bidet S, Langer SZ (1990) Pharmacological characterization of Alpha-2 adrenergic receptor subtye involved in the release of insulin from isolated rat pancreatic islets. J Pharmacol Exp Ther 254:883–887

    Google Scholar 

  • Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988) Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype. Proc Natl Acad Sci USA 85:6301–6305

    Google Scholar 

  • Robison GA, Langley PE, Burns TW (1972) Adrenergic receptors in human adipocytes-divergent effects on adenosine 3′5′-monophosphate and lipolysis. Biochem Pharmacol 21:589–592

    Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    Google Scholar 

  • Ruffolo Jr RR, Nichols AJ, Hieble JP (1991) Metabolic regulation by α1- and α2-adrenoceptors. Life Sci 49:171–183

    Google Scholar 

  • Ruffolo Jr RR, Nichols AJ, Stadel JF, Hieble JP (1993) Pharmacologic and therapeutic applications of α2-adrenoceptor subtypes. Annu Rev Pharmacol Toxicol 32:243–279

    Google Scholar 

  • Scheinin H, Virtanen R, Macdonald E, Lammintausta R, Scheinin M (1989) Medetomidine-a novel alpha-2 adrenoceptor agonist: A review of its pharmacodynamic effects. Prog Neuropsychopharmacol Biol Psychiatry 13:635–651

    Google Scholar 

  • Simonneauz V, Ebadi M, Bylund DB (1991) Identification and characterization of alpha-2D adrenergic receptors in bovine pineal gland. Mol Pharmacol 40:235–241

    Google Scholar 

  • Taouis M, Valet P, Estan L, Lafontan M, Montastruc P, Berlan M (1989) Obesity modifies the adrenergic status of dog adipose tissue. J Pharmacol Exp Ther 250:1061–1066

    Google Scholar 

  • Tharp MD, Hoffman BH, Lefkowitz RJ (1981) Alpha-adrenergic receptors in human adipocyte membranes: direct determination by [3H-yohimbine binding. J Clin Endocrinol Metab 52:709–714

    Google Scholar 

  • Valet PH, Berlan M, Beauville M, Crampes F, Montastruc JL, Lafontan M (1990) Neuropeptide Y and Peptide YY inhibit lipolysis in human and dog fat cells through a pertussis toxin-sensitive G protein. J Clin Invest 85:291–295

    Google Scholar 

  • Virtanenen R, Savola JM, Saano V, Nyman L (1988) Characterization of the selectivity, specificity and potency of medetomidine as an α2-adrenoceptor agonist. Eur J Pharmacol 150:9–14

    Google Scholar 

  • Vizi ES, Hársing Jr, LG, Gaal J, Kaposci J, Bernáth S, Somogyi GT (1986) CH-38083, a selective, potent antagonist of alpha-2 adrenoceptors. J Pharmacol Exp Ther 238:701–706t

    Google Scholar 

  • Vizi ES, Tóth I, Hársing Jr, LG, Szabó L, Somogyi GT, Szantay CS (1987) Berbanes a new class of alpha-2 adrenoceptor antagonists. J Med Chem 30:1355–1359

    Google Scholar 

  • Vizi ES, Lábos E (1991) Non-synaptic interactions at presynaptic level. Prog Neurobiol 37:145–163

    Google Scholar 

  • Wahrenberg H, Engfeldt P, Bolinder J, Arner P (1987) Acute adaptation of lipolysis during physical exercise in humans. Am J Physiol 253:E383–390

    Google Scholar 

  • Yoshida M, Latifpour J, Nishimoto T, Weiss RM (1991) Pharmacological characterization of alpha adrenergic receptors in the young and old female rabbit urethra. J Pharmacol Exp Ther 257:1100–1108

    Google Scholar 

  • Zeng D, Harrison JK, D'Angelo DD, Barber CM, Tucker AL, Lu Z, Lynch KR (1990) Molecular characterization of a rat α2B-adrenergic receptor. Proc Natl Acad Sci USA 87:3102–3106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Institute of Medical Pharmacology, University of Pisa, Via Roma 55, I-5626 Pisa, Italy

Correspondence to: E. S. Vizi at the above address

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarkovács, G., Blandizzi, C. & Vizi, E.S. Functional evidence that α2A-adrenoceptors are responsible for antilipolysis in human abdominal fat cells. Naunyn-Schmiedeberg's Arch Pharmacol 349, 34–41 (1994). https://doi.org/10.1007/BF00178203

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178203

Key words

Navigation