Skip to main content
Log in

The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18s rRNA sequences

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

To determine the evolutionary positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia, we obtained 18S rRNA sequences from 11 new taxa representing the major living orders and families of gymnosperms. With the published Chlamydomonas as an outgroup, phylogenetic analyses of our new data and available sequences indicate that (1) the Gnetales form a monophyletic group, which is an outgroup to the conifers, (2) the conifers are monophyletic, (3) Taxaceae, Cephalotaxaceae, Cupressaceae, and Taxodiaceae form a monophyletic group, (4) Amentotaxus is closer to Torreya than to Cephalotaxus, suggesting that Amentotaxus is better to be classified as a member of Taxaceae, (5) Phyllocladus, Dacrycarpus, Podocarpus, and Nageia form a monophyletic group, and (6) Pinaceae is an outgroup to the other families of conifers. Our finding that Phyllocladus is a sister group of the Podocarpaceae disagrees with the suggestion that the phylloclade of the genus is an ancient structure and that the genus is a terminal taxon within the Podocarpaceae. The genus Nageia is more closely related to Podocarpus than to Dacrycarpus and was derived from within the Podocarpaceae. In conclusion, our data indicate that in conifers, the uniovulate cone occurred independently in Taxacaeae and Cephalotaxaceae, and in Podocarpaceae after the three families separated from Pinaceae, and support the hypothesis that the uniovulate cone is derived from reduction of a multiovulate cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan, New York

    Google Scholar 

  • Chaw SM, Long H, Wang BS, Zharkikh A, Li WH (1993) The phylogenetic position of Taxaceae based on 18S rRNA sequences. J Mol Evol 37:624–630

    Google Scholar 

  • Chuang TI, Hu WWL (1963) Study of Amentotaxus argotaenia (Hance) Pilger. Bot Bull Acad Sinica 4:10–14

    Google Scholar 

  • Clifford HT, Constantine J (1980) Fern, fern allies and conifers of Australia. Univ Queensland Press, Brisbane

    Google Scholar 

  • Core EL (1955) Plant taxonomy. Prentice-Hall, Englewood

    Google Scholar 

  • Coulter JM, Chamberlain CJ (1917) Morphology of gymnosperms. Univ Chicago Press, Chicago

    Google Scholar 

  • Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Missouri Bot Gard 72:716–793

    Google Scholar 

  • Crane PR (1988) Major clades and relationships in the “higher” gymnosperms. In: Beck CB (ed) Origin and evolution of gymnosperms. Columbia Univ Press, New York, pp 218–272

    Google Scholar 

  • De Laubenfels DJ (1987) Revision of the genus Naegia (Podocarpaceae). Blumea 32:209–211

    Google Scholar 

  • Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52:321–431

    Google Scholar 

  • Eames AJ (1952) Relationships of the Ephedrales. Phytomorphology 2:79–100

    Google Scholar 

  • Felsenstein J(1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Florin R (1948) On the morphology and relationships of Taxaceae.Bot Gaz 110:31–39

    Google Scholar 

  • Fu DZ (1992) Nageiaceae—a new gymnosperm family. Acta Phytotaxonomica Sinica 30:515–528

    Google Scholar 

  • Goodman HM, MacDonald RJ (1979) Cloning of hormone genes from a mixture of cDNA molecule. Methods Enzymol 68:75–90

    Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84:5823–5827

    Google Scholar 

  • Hamby RK, Zimmer EA (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis DE, Doyle JJ (eds) Molecular systematics in plants. Chapman & Hall, New York, pp 50–91

    Google Scholar 

  • Harris TM (1976) The Mesozoic gymnosperms. Rev Paleobot Palynol 21:119–134

    Google Scholar 

  • Hart JA (1987) A cladistic analysis of conifers: preliminary results. J Arnold Arb 68:269–307

    Google Scholar 

  • Hasebe M, Ito M, Kofuji R, Iwatsuki K, Ueda K (1992a) Phylogenetic relationships in Gnetophyta deduced from rbcL gene sequences. Bot Mag Tokyo 105:385–391

    Google Scholar 

  • Hasebe M, Kofuji R, Ito M, Iwatsuki K, Ueda K (1992b) Phylogeny of gymnosperms inferred from rbcL gene sequences. Bot Mag Tokyo 105:673–679

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrap as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Hollway JT (1937) Ovule anatomy and development and embryology in Phyllocladus alpinus Hook. and in P. glaucus Carr. Trans R Soc N Z 67:149–165

    Google Scholar 

  • Keng H (1969) Aspects of morphology of Amentotaxus formosana with a note on the taxonomic position of the genus. J Arnold Arb 50: 432–446

    Google Scholar 

  • Keng H (1973) On the family Phyllocladaceae. Taiwania 18:142–145

    Google Scholar 

  • Keng H (1974) The phylloclade of Phyllocladus and its possible bearing on the branch systems of progymnosperms. Ann Bot 38:757–764

    Google Scholar 

  • Keng H (1977) Phyllocladus and its bearing on the systematics of conifers. Plant Syst Evol Suppl 1:235–251

    Google Scholar 

  • Keng H (1978) The genus Phyllocladus (Phyllocladaceae). J Arnold Arb 59:249–273

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kudo Y, Yamamoto Y (1931) Amentotaxaceae. In: Kudo Y (ed) Ma terials for a flora of Formosa IV. J Soc Trop Agr (Taihoku) 3:110–111

    Google Scholar 

  • Loconte H, Stevenson DW (1990) Cladistics of spermatophyta. Brittonia 42:197–211

    Google Scholar 

  • Meyen SV (1984) Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot Rev 50:1–111

    Google Scholar 

  • Miller CN (1977) Mesozoic conifers. Bot Rev 43:217–280

    Google Scholar 

  • Nairn CJ, Fed RJ (1988) The complete nucleotide sequence of the small-subunit ribosomal RNA coding for the cycad Zamia pumila: phylogenetic implications. J Mol Evol 27:133–141

    Google Scholar 

  • Nickrent DD, Starr EM (1994) High rates of the nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. J Mol Evol 39:62–70

    Google Scholar 

  • Page CN (1989) New and maintained genera in the conifer families Podocarpaceae and Pinaceae. Notes R Bot Gard Edinb 45:377–395

    Google Scholar 

  • Page CN (1990) Coniferophytina. In: Kubitzki K (ed) The family and genera of vascular plants, vol I. Kramer KU, Green PS (eds) Pteridophytes and gymnosperms. Springer-Verlag, Berlin, pp 281–361

    Google Scholar 

  • Patel RN (1968) Wood anatomy of Podocarpaceae indigenous to New Zealand. 3. Phyllocladus. N Z J Bot 6:3–8

    Google Scholar 

  • Pilger R (1926) Coniferae. In: Engler A, Prand K (eds) Die Natürlichen Pflänzenfamilien, 2nd ed, vol 13. W. Engelmann, Leipzig, pp 121–407

    Google Scholar 

  • Pocknall DT (1981) Pollen morphology of Phyllocladus L.C. et A. Rich. N Z J Bot 19:259–266

    Google Scholar 

  • Price RA (1990) The genera of Taxaceae in the southeastern United States. J Arnold Arb 71:69–91

    Google Scholar 

  • Price RA, Thomas J, Strauss SH, Gadek PA, Quinn CJ, Palmer JD (1993) Familial relationships of the conifers from rbcL sequence data. Amer J Bot 80:172

    Google Scholar 

  • Quinn CJ (1986) Embryogeny of Phyllocladus. N Z J Bot 24:575–579

    Google Scholar 

  • Quinn CJ (1987) The phyllocladaceae Keng—a critique. Taxon 36: 559–565

    Google Scholar 

  • Raha S, Merante F, Protean G, Reed JK (1990) Simultaneous isolation of total cellular RNA and DNA from tissue culture cells using phenol and lithium chloride. GATA 7:173–177

    Google Scholar 

  • Raubeson LA, Jansen RK (1992) A rare chloroplast-DNA structural mutation is shared by all conifers. Biochem Syst Evol 20:17–24

    Google Scholar 

  • Richard 1.C, Richard A (1826) Commentatiio botanica de Conifereis et Cycadeis. Stuggart, p 129

  • Robertson A (1906) Some points in the morphology of Phyllocladus alpinus Hook. Ann Bot 20:259–265

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sinnott WW (1913) The morphology of the reproductive structures in the Podocarpineae. Ann Bot 27:39–82

    Google Scholar 

  • Takhtajan AL (1986) Floristic regions of the world. Univ California Press, Berkeley

    Google Scholar 

  • Troitsky AV, Melekhovets YuF, Rakhimova GM, Bobrova VK, Valiejo-Roman KM, Antonov AS (1991) Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. J Mol Evol 32:255–261

    Google Scholar 

  • Zharkikh A, Li W-H (1992) Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. Mol Biol Evol 9:1119–1147

    Google Scholar 

  • Zharkikh A, Li W-H (1995) Estimation of confidence in phylogeny: complete-and-partial bootstrap technique. Mol Phylogenet Evol 4:44–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: S.-M. Chaw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaw, SM., Sung, HM., Long, H. et al. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18s rRNA sequences. J Mol Evol 41, 224–230 (1995). https://doi.org/10.1007/BF00170676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170676

Key words

Navigation