Skip to main content
Log in

Calculation of solvation and binding free energy differences between VX-478 and its analogs by free energy perturbation and AMSOL methods

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

VX-478 belongs to a novel class of HIV-1 protease inhibitors that are based on N,N-disubstituted benzene sulfonamides. Force field parameters for the N,N-dialkyl benzene sulfonamide moiety have been assembled from the literature and from our own ab initio calculations. These parameters were employed to calculate solvation and binding free energy differences between VX-478 and two analogs. The free energy perturbation method has been used to determine these differences using two approaches. In the first approach, intergroup interaction terms only were included in the calculation of free energies (as in most reports of free energy calculations using AMBER). In the second approach, both the inter- and intragroup interaction terms were included. The results obtained with the two approaches are in excellent agreement with each other and are also in close agreement with the experimental results. The solvation free energies of N,N-dimethyl benzene sulfonamide derivatives (truncated models of the inhibitors), calculated using continuum solvation (AMSOL) methods, are found to be in qualitative agreement with the experimental and free energy perturbation results. The binding and solvation free energy results are discussed in the context of structure-based drug design to show how physicochemical properties (for example aqueous solubilities and bioavailabilities) of these HIV-1 protease inhibitors were improved, while maintaining their inhibitory potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, E.E., Baker, C.T., Dwyer, M.D., Murcko, M.A., Rao, B.G., Tung, R.D. and Navia, M.A., J. Am. Chem. Soc., 117 (1995) 1181.

    Google Scholar 

  2. Tung, R.D., Livingston, D.J., Rao, B.G., Kim, E.E., Baker, C.T., Boger, J.S., Chambers, S.P., Deininger, D.D., Dwyer, M.D., Elsayed, L., Funlghum, J., Li, B., Murcko, M.A., Navia, M.A., Novak, P., Pazhanisamy, S., Stuver, C. and Thomson, J.A., manuscript in preparation.

  3. Vazquez, M.L., Bryant, M.L., Clare, M., DeCrescenzo, G.A., Doherty, E.M., Freskos, J.N., Getman, D.P., Houseman, K.A., Julien, J.A., Kocan, G.P., Mueller, R.A., Shieh, H.-S., Stallings, W.C., Stegeman, R.A. and Talley, J.J., J. Med. Chem., 38 (1995) 581.

    Google Scholar 

  4. Navia, M.A. and Murcko, M.A., Curr. Opin. Struct. Biol., 2 (1992) 202.

    Google Scholar 

  5. Lyle, T.A., Wiscount, C.M., Guare, J.P., Thompson, W.J., Anderson, P.S., Darke, P.L., Zugay, Z.A., Emini, E.A., Schleif, W.A., Qunitero, J.C., Emini, E.A. and Huff, J.R., J. Med. Chem., 34 (1991) 1228.

    Google Scholar 

  6. Kollman, P.A., Chem. Rev., 93 (1993) 2395.

    Google Scholar 

  7. Straatsma, T.P. and McCammon, J.A., Annu. Rev. Phys. Chem., 43 (1992) 407.

    Google Scholar 

  8. Cramer, C.J. and Truhlar, D.G., J. Am. Chem. Soc., 113 (1991) 8305.

    Google Scholar 

  9. Cramer, C.J. and Truhlar, D.G., J. Comput.-Aided Mol. Design, 6 (1992) 629.

    Google Scholar 

  10. McCarrick, M.A. and Kollman, P.A., Methods Enzymol., 241 (1994) 370.

    Google Scholar 

  11. Rao, B.G. and Murcko, M.A., J. Comput. Chem., 15 (1994) 1241.

    Google Scholar 

  12. Cieplak, P. and Kollman, P.A., J. Comput.-Aided Mol. Design, 7 (1993) 291.

    Google Scholar 

  13. Rao, B.G., Tilton, R.F. and Singh, U.C., J. Am. Chem. Soc., 114 (1992) 4447.

    Google Scholar 

  14. Reddy, M.R., Varney, M.D., Kalish, V., Viswanadhan, V.N. and Appelt, K., J. Med. Chem., 37 (1994) 1145.

    Google Scholar 

  15. Van, Gunsteren, W.F., Protein Eng., 2 (1988) 5.

    Google Scholar 

  16. AMBER (v. 3.3) is a fully vectorized version of AMBER (v. 3.0) by Singh, U.C., Weiner, P.K., Caldwell, J.W. and Kollman, P.A., University of California, San Francisco, CA, 1986.

  17. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 196 (1984) 765.

    Google Scholar 

  18. Jorgensen, W.L., Chandrasekhar, J. and Madura, J.D., J. Chem. Phys., 79 (1983) 926.

    Google Scholar 

  19. QUANTA (v. 3.3) Parameter Handbook, Molecular Simulations, Waltham, MA, 1992.

  20. Bindal, R.D., Golab, J.T. and Katzenellenbogen, J.A., J. Am. Chem. Soc., 112 (1990) 7861.

    Google Scholar 

  21. AMSOL (v. 4.1), Cramer, C.J., Hawkins, G.D., Lynch, G.C., Truhlar, D.G. and Liotard, D.A., 1994.

  22. Jorgensen, W.L. and Nguyen, T.B., J. Comput. Chem., 14 (1993) 195.

    Google Scholar 

  23. Dewar, M.J.S., Jei, C. and Yu, J., Tetrahedron, 49 (1993) 5003.

    Google Scholar 

  24. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209.

    Google Scholar 

  25. Hine, J. and Mookerjee, P.K., J. Org. Chem., 40 (1975) 292.

    Google Scholar 

  26. Rao, B.G. and Singh, U.C., J. Am. Chem. Soc., 111 (1989) 3125.

    Google Scholar 

  27. Pearlman, D.A. and Connelly, P.R., J. Mol. Biol., 248 (1995) 696.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, B.G., Kim, E.E. & Murcko, M.A. Calculation of solvation and binding free energy differences between VX-478 and its analogs by free energy perturbation and AMSOL methods. J Computer-Aided Mol Des 10, 23–30 (1996). https://doi.org/10.1007/BF00124462

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124462

Keywords

Navigation