Skip to main content
Log in

Biodegradation of lignin-carbohydrate complexes

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Covalent lignin-carbohydrate (LC) linkages exist in lignocellulose from wood and groups herbaceous plants. In wood, they consist of ester and ether linkages through sugar hydroxyl to the α-carbanol of phenylpropane subunits in lignin. In grasses, ferulic and p-coumaric acids are esterified to hemicelluloses and lignin, respectively. Hemicelluloses also contain substitutents and side groups that restrict enzymatic attack. Watersoluble lignin-carbohydrate complexes (LCCs) often precipitate during digestion with polysaccharidases, and the residual sugars are more diverse than the bulk hemicellulose. A number of microbial esterases and hemicellulose polysaccharidases including acetyl xylan esterase, ferulic acid esterase, and p-coumaric esterase attack hemicellulose side chains. Accessory hemicellulases include α-l-arabinofuranosidase and α-methyl-glucuranosidase. Both of these side chains are involved in LC bonds. β-Glucosidase will attach sugar residues to lignin degradation products and when carbohydrate is attached to lignin, lignin peroxidase will depolymerize the lignin more readily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APPL:

acid precipitable polymeric lignin

CBQase:

cellobioquinone oxidoreductase

LC:

lignincarbohydrate

LCC(s):

lignin-carbohydrate complex

DHP:

Dehydrogenative polymerisate

DMSO:

dimethylsulfoxide

DP:

degree of polymerisation

MWEL:

milled wood enzyme lignin

MWL:

milled wood lignin (not digested with carbohydrases)

References

  • Adhi, TP, Korus, RA & Crawford, DL (1989) Production of major extracellular enzymes during lignocellulose degradation by two Streptomyces in agitated submerged culture. Appl. Environ. Microbiol. 55: 1165–1168.

    Google Scholar 

  • Akin, DE, & Rigsby, LL (1985) Influence of phenolic acids on rumen fungi. Agronomy J. 77: 180–182

    Google Scholar 

  • Atushi, K, Azuma, J-I & Koshijima, T (1984) Lignin-carbohydrate complexes and phenolic acids in bagasse. Holzforschung 38: 141–149

    Google Scholar 

  • Azuma, J-I & Koshijima, T (1988) Lignin-carbohydrate complexes from various sources. Methods Enzymology 161: 12–18

    Google Scholar 

  • Azuma, J-I, Takahashi, N & Koshijima, T (1981) Isolation and characterization of lignin-carbohydrate complexes from the milled-wood lignin fraction of Pinus densiflora Sieb et Zucc. Carbohyd. Res. 93: 91–104

    Google Scholar 

  • Biely, P, Krátky, Z & Vrsanská, M (1981) Substrate-binding site of endo-1,4-β-xylanase of the yeast Cryptococcus albidus. Eur. J. Biochem. 119: 559–564

    Google Scholar 

  • Biely, P, Puls, J & Schneider, H (1985) Acetyl xylan esterases in fungal xylanolytic systems. FEBS 186: 80–84

    Google Scholar 

  • Biely, P, MacKenzie, CR, Puls, J & Schneider, H (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio/Technology 4: 731–733

    Google Scholar 

  • Borneman, WS, Hartley, RD, Morrison, WH, Akin, DE & Ljungdahl, LG (1990) Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl. Microbiol. Biotechnol. 33: 345–351

    Google Scholar 

  • Brice, RE & Morrison, IM (1982) The degradation of isolated hemicelluloses and lignin-hemicellulose complexes by cellfree rumen hemicellulases. Carbohyd. Res. 101: 93–100

    Google Scholar 

  • Broda PMA, Mason JC & Zimmerman WK (1987) Decomposition of lignocellulose. International Patent WO 87/06609

  • Chauvet, J-M, Comtat, J & Zimmerman, WK (1987) Assistance in bleaching of never-dried pulps by the use of xylanases: Consequences on pulp properties. 4th Intl. Symp. Wood Pulping Chem. (Paris), Poster Presentations Vol 2: 325–327

    Google Scholar 

  • Chesson, A (1988) Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Animal Feed Sci. Technol. 21: 219–228

    Google Scholar 

  • Chesson, A, Gordon, AH & Lomax, JA (1983) Substituent groups linked by alkali-labile bonds to arabinose and xylose residues of legume, grass and cereal straw cell walls and their fate during digestion by rumen microorganisms. J. Sci. Food. Agric. 34: 1330–1340

    Google Scholar 

  • Comtat, J, Joseleau, J-P, Bosso, C & Barnoud (1974) Characterization of structurally similar neutral and acidic tetrasaccharides obtained from the enzymic hydrolysate of a 4-O-methyl-d-glucurono-d-xylan. Carbohyd. Res. 38: 217–224.

    Google Scholar 

  • Conchie, J, Hay, AJ & Lomax, JA (1988) Soluble lignin-carbohydrate complexes from sheep rumen fluid: Their composition and structural features. Carbohyd. Res. 177: 127–151

    Google Scholar 

  • Crawford, D (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol. 35: 1041–1045

    Google Scholar 

  • Crawford, DL, Pometto, AL & Crawford, RL (1983) Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol. 45: 898–904

    Google Scholar 

  • Donnelly, PK & Crawford, DL (1988) Production by Streptomyces viridosporus T7A of an enzyme which cleaves aromatic acids from lignocellulose. Appl. Environ. Microbiol. 54: 2237–2244

    Google Scholar 

  • Deobald, LE & Crawford, DL (1987) Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. Appl. Microbiol. Biotechnol. 26: 158–163

    Google Scholar 

  • Ericksson, Ö, Goring, DAI & Lindgren, BO (1980) Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci. Technol. 14: 267–279.

    Google Scholar 

  • Ford, CW (1989) A feruloylated arabinoxylan liberated from cell walls of Digitaria decumbens (pangola grass) by treatment with borohydride. Carbohyd. Res. 190: 137–144

    Google Scholar 

  • Gaillard, BDE & Richards, GN (1975) Presence of soluble lignincarbohydrate complexes in the bovine rumen. Carbohyd. Res. 42: 135–145

    Google Scholar 

  • Higuchi, T, Ioto, Y, Shimada, M & Kawamura, I (1967) Chemical properties of milled wood lignin of grasses. Phytochemistry 6: 1551–1556

    Google Scholar 

  • Ishihara, M & Shimizu, K (1988) α(1»2)-glucuronidase in the enzymatic saccharification of hardwood xylan I. Screening of α-glucuronidase producing fungi. Mokuzai Gakkaishi 34: 58–64

    Google Scholar 

  • Ishii, T & Hiroi, T (1990) Isolation and characterization of feruloylated arabinoxylan oligosaccharides from bamboo shoot cell-walls. Carbohyd. Res. 196: 175–183

    Google Scholar 

  • Iversen, T, Westermark, U & Samuelsson, B (1987) Some comments on the isolation of galactose-containing lignin-carbohydrate complexes. Holzforschung 41: 119–121

    Google Scholar 

  • Jeffries, TW, Choi, S & Kirk, TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 42: 290–296

    Google Scholar 

  • Johnson, KG, Harrison, BA, Schneider, H, MacKenzie, CR & Fontana, JD (1988) Xylan-hydrolyzing enzymes from Streptomyces spp. Enzyme Microb. Technol. 10: 403–409

    Google Scholar 

  • Joseleau, J-P, & Gancet, C (1981) Selective degradations of the lignin-carbohydrate complex from aspen wood. Svensk Papperstidning 84: R123-R127

    Google Scholar 

  • Jurasek L & Paice MG (1988) Biological beaching of pulp (pp 11–13). Tappi Internat. Pulp Bleach. Conf., Orlando, Florida

  • Kaji, A (1984) l-Arabinosidases. Advan. Carbohyd. Chem. Biochem. 42: 383–394

    Google Scholar 

  • Kantelinen A, Rättö M, Sundquist J, Ranua M, Viikari L & Linko M (1988) Hemicellulases and their potential role in bleaching (pp 1–9). Tappi Internat. Pulp Bleaching Conf., Orlando, Florida

  • Kato, A, Azuma, JI & Koshijima, T (1987) Isolation and identification of a new feruloylated tetrasaccharide from bagasse lignin-carbohydrate complex containing phenolic acid. Agric. Biol. Chem. 51: 1691–1693

    Google Scholar 

  • Khan, AW, Lanm, KA & Overend, RP (1990) Comparison of natural hemicellulose and chemically acetylated xylan as substrates for the determination of acetyl-xylan esterase activity in Aspergilli. Enzyme Microb. Technol. 12: 127–131

    Google Scholar 

  • Kirk, TK, Connors, WJ, Bleam, RD, Hackett, WF & Zeikus, JG (1975) Preparation and microbial decomposition of synthetic [14C] lignins. Proc. Natl. Acad. Sci. U.S.A. 72: 2515–2519

    Google Scholar 

  • Kirk, TK, Connors, WJ & Zeikus, JG (1976) Requirement for a growth substrate during lignin decomposition by two woodrotting fungi. Appl. Environ. Microbiol. 32: 192–194

    Google Scholar 

  • Kivaisi, AK, Op den Camp, HJM, Lubberding, HJ, Boon, JJ & Vogels, GD (1990) Generation of soluble lignin-derived compounds during degradation of barley straw in an artificial rumen reactor. Appl. Microbiol. Biotechnol. 33: 93–98

    Google Scholar 

  • Kondo, R & Imamura, H (1987) The formation of model glycosides by wood-rotting fungi. Lignin enzymatic and microbial degradation. INRA, Paris

    Google Scholar 

  • Kondo, R & Imamura, H (1989a) Formation of lignin model xyloside in polysaccharides media by wood-rotting fungi. Mokuzai Gakkaishi 35: 1001–1007

    Google Scholar 

  • Kondo, R & Imamura, H (1989b) Model study on the role of the formation of glycosides in the degradation of lignin by woodrotting fungi. Mokuzai Gakkaishi 35: 1008–1013

    Google Scholar 

  • Kondo, R, Imori, T & Imamura, H (1988) Enzymatic synthesis of glucosides of monomeric lignin compounds with commercial β-glucosidase. Mokuzai Gakkaishi 34: 724–731

    Google Scholar 

  • Kondo, R, Imori, T, Imammura, H & Kishida, T (1990) Polymerization of DHP and depolymerization of DHP glucoside by lignin oxidizing enzymes. J. Biotechnol. 13: 181–188

    Google Scholar 

  • Koshijima, T, Watanabe, T & Yaku, T (1989) Structure and properties of the lignin-carbohydrate complex polymer as an amphipathic substance. In: Glasser, WG & Sarkanen, S (Eds) Lignin Properties and Materials. ACS Symposium Ser. 397 (pp 11–28). American Chemical Society, Washington, D.C.

    Google Scholar 

  • Lee, H, To, RJB, Latta, RK, Biely, P & Schneider, H (1987) Some properties of extracellular acetylxylan esterase produced by the yeast Rhodotorula mucilaginosa. Appl. Environ. Microbiol. 53: 2831–2834

    Google Scholar 

  • MacKenzie, CR & Bilous, D (1988) Ferulic acid esterase activity from Schizophyllum commune. Appl. Environ. Microbiol. 54: 1170–1173

    Google Scholar 

  • MacKenzie, CR, Bilous, D, Schneider, H & Johnson, KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl. Environ. Microbiol. 53: 2835–2839

    Google Scholar 

  • Markwalder, HU & Neukom, H (1976) Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochemistry 15: 836–837

    Google Scholar 

  • Mason, JC, Richards, M, Zimmerman, W & Broda, P (1988) Identification of extracellular proteins from actinomycetes responsible for the solubilization of lignocellulose. Appl. Microbiol. Biotechnol. 28: 276–280

    Google Scholar 

  • Mason, JC, Birch, OM & Broda, P (1990) Preparation of 14C-radiolabelled lignocelluloses from spring barley of differing maturities and their solubilization by Phanerochaete chrysosporium and Streptomyces cyanus. J. Gen. Microbiol. 136: 227–232

    Google Scholar 

  • McCarthy, AJ, MacDonald, MJ, Paterson, A & Broda, P (1984) Degradation of [14C] lignin-labelled wheat lignocellulose by white-rot fungi. J. Gen. Microbiol. 130: 1023–1030

    Google Scholar 

  • McCarthy, AJ, Paterson, A & Broda, P (1986) Lignin solubilization by Thermonospora mesophila. Appl. Microbiol. Biotechnol. 24: 347–352

    Google Scholar 

  • McDermid, KP, MacKenzie, CR & Forsberg, CW (1990) Esterase activities of Fibrobacter succinogenes subsp Succinogenes S85. Appl. Environ. Microbiol. 56: 127–132

    Google Scholar 

  • Meshitsuka, G, Lee, ZZ, Nakano, J & Eda, S (1983) Contribution of pectic substances to lignin-carbohydrate bonding. Int. Symp. Wood Pulping Chem. 1: 149–152

    Google Scholar 

  • Minor, JL (1982) Chemical linkage of pine polysaccharides to lignin. J. Wood Chem. Technol. 2(1): 1–16

    Google Scholar 

  • Morison, IM (1974) Structural investigation on the lignin-carbohydrate complexes of Lolium perene. Biochem J. 139: 197–204

    Google Scholar 

  • Mukoyoshi, SI, Azuma, JI and Koshijima, T (1981) Lignin-carbohydrate complexes from compression wood of Pinus densiflora Sieb et. Zucc. Holzforschung 35: 233–240

    Google Scholar 

  • Neilson, MJ & Richards, GN (1982) Chemical structures in a lignin-carbohydrate complex isolated from bovine rumen. Carbohyd. Chem. 104: 121–138

    Google Scholar 

  • Obst, JR (1982) Frequency and alkali resistance of lignin-carbohydrate bonds in wood. Tappi 65 (4): 109–112

    Google Scholar 

  • Odier E, Mozuch M, Kalyanaraman B & Kirk TK (1987) Cellobiose: quinone oxidoreductase does not prevent oxidative coupling of phenols or polymerization of lignin by ligninase. Les Colloques de l'INRA, No. 40. Dekker 131–136

  • Paice, MG, Bernier, R & Jurasek, L (1988a) Viscosity-enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol. Bioeng. 32: 235–239

    Google Scholar 

  • Paice, MG, Bernier, R & Jurasek, L (1988b) Bleaching hardwood kraft with enzymes from cloned systems. CPPA Ann. Mtg. (Montreal) preprints 74A: 133–136

    Google Scholar 

  • Paszczynski, A, Huynh, V-B & Crawford, R (1985) Enzymatic activities of an extracellular manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol. Lett. 29: 37–41

    Google Scholar 

  • Pometto, AL & Crawford, DL (1986) Catabolic fate of Streptomyces viridosporus T7A-produced, acid-precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 51: 171–179

    Google Scholar 

  • Poutanen, K & Sundberg, M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl. Microbiol. Biotechnol. 28: 419–424

    Google Scholar 

  • Puls, J, Schmidt, O & Granzow, C (1987) α-Glucuronidase in two microbial xylanolytic systems. Enzyme Microb. Technol. 9: 83–88

    Google Scholar 

  • Ramachandra, M, Crawford, DL & Pometto, AL (1987) Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: A comparative study of wild-type and genetically manipulated strains. Appl. Environ. Microbiol. 53: 2754–2760

    Google Scholar 

  • Ramachandra, M, Crawford, DL & Hertel, G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl. Environ. Microbiol. 54: 3057–3063

    Google Scholar 

  • Reid, ID, Abrams, GD & Pepper, JM (1982) Water soluble products from the degradation of aspen lignin by Phanerochaete chrysosporium Can. J. Bot. 60: 2357–2364

    Google Scholar 

  • Renganathan, V, Usha, SN, & Lindenburg, F (1990) Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium: Interaction with microcrystalline cellulose. Appl. Microbiol. Biotechnol. 32: 609–613

    Google Scholar 

  • Roberts, JC, McCarthy, AJ, Flynn, NJ & Broda, P (1990) Modification of paper properties by the pretreatment of pulp with Saccharomonospora viridis xylanase. Enzyme Microb. Technol. 12: 210–213

    Google Scholar 

  • Scalbert, A, Monties, B, Lallemand, JY, Guittet, E & Rolando, C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24: 1359–1362

    Google Scholar 

  • Shimada, M, Fukuzuka, T & Higuchi, T (1971) Ester linkages of p-coumaric acid in bamboo and grass lignins. Tappi 54: 72–78

    Google Scholar 

  • Smith, DCC (1955) Ester groups in lignin. Nature 176: 267–268

    Google Scholar 

  • Takahaski, N & Koshijima, T (1988) Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci. Technol. 22: 231–241

    Google Scholar 

  • Tanabe, H & Kobayashi, Y (1986) Enzymatic maceration mechanism in biochemical pulping of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast. Agric. Biol. Chem. 50: 2779–2784

    Google Scholar 

  • Tanabe, H & Kobayashi, Y (1987) Effect of lignin-carbohydrate complex on maceration of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast by pectinolytic enzymes from Erwinia carotovora. Holzforschung 41: 395–399

    Google Scholar 

  • Tanabe, H & Kobayashi, Y (1988) Aggregate of pectic substances and lignin-carbohydrate complex in mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast and its degradation by pectinolytic enzymes from Erwinia cartovora. Holzforschung 42: 47–52

    Google Scholar 

  • Tien, M & Kirk, TK (1983) Lignin-degrading enzyme from hymenomycete Phanerochaete chrysosporium Burds. Science 221: 661–663

    Google Scholar 

  • Tien, M & Kirk, TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. U.S.A. 81: 2280–2284

    Google Scholar 

  • Timell, TE (1962) Enzymatic hydrolysis of a 4-O-methylglucuronoxylan from the wood of white birch. Holzforschung 11: 436–447

    Google Scholar 

  • Wang, PY, Bolker, HI & Purves, CB (1967) Uronic acid ester groups in some softwoods and hardwoods. Tappi 50(3): 123–124

    Google Scholar 

  • Watanabe, T & Koshijima, T (1988) Evidence for an ester linkage between lignin and glucuronic acid in lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 52: 2953–2955

    Google Scholar 

  • Watanabe, TJ, Ohnishi, Y, Kaizu, YS & Koshijima, T (1989) Binding site analysis of the ether linkages between lignin and hemicelluloses in lignin-carbohydrate complexes by DDQ-oxidation. Agric. Biol. Chem. 53: 2233–2252

    Google Scholar 

  • Westermark, U & Ericksson, KE (1974a) Carbohydrate-dependent enzymic quinone reduction during lignin degradation. Acta Chem. Scand. B 28: 204–208

    Google Scholar 

  • Westermark, U & Ericksson, KE (1974b) Cellobiose-quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Acta Chem. Scand. B 28: 209–214

    Google Scholar 

  • Zimmerman, W & Broda, P (1989) Utilization of lignocellulose from barley straw by actinomycetes. Appl. Microbiol. Biotechnol. 30: 103–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffries, T.W. Biodegradation of lignin-carbohydrate complexes. Biodegradation 1, 163–176 (1990). https://doi.org/10.1007/BF00058834

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058834

Key words

Navigation