Skip to main content
Log in

A review of some physiological and toxicological responses of freshwater fish to acid stress

  • Review
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Data relating to the specific effect of low pH on growth of freshwater fishes are ambiguous. Reproductive failure resulting from acid stress appears to be related to an upset in calcium metabolism and to faulty deposition of protein in developing oocytes. It appears that the ’no effect‘ level of pH depression for successful reproduction is around 6.5. Data on behaviorial responses of freshwater fish to acid stress and CO2 are described. Most fish appear to be indifferent to pH within the range of approximately 10.5 to 5.5 and between 7.4 and 4.5 CO2 appears to be the main directive factor. In cases of severe acid stress alteration of gill membranes and/or coagulation of gill mucus occurs and death due to hypoxia may result from a lengthening of the water-blood diffusion distance. Several reports agree that acid stress causes an upset of electrolyte homeostasis in fish but effects of low pH on osmotic permeability are largely lacking. Most hatcheryreared salmonids can tolerate pH 5.0 indefinitely but below this level the homeostatic electrolyte and osmotic regulatory mechanisms become inadequate. When fish are subjected to debilitating acid stress blood pH decreases possibly as the result of flux of H+ ions across gill membranes into the blood. This could change transepithelial potential and allow a blood, to-water diffusion of Na+ ions down an electrochemical gradient. Lowered ambient pH may interfere with gill calcium levels increasing permeability to both H+ and Na+ ions or an acidemia may occur as the result of a decrease in the excretion of metabolically produced H+ ions and CO2. When the capacity of the buffer mechanisms is exceeded the blood pH drops and the capacity of hemoglobin to transport oxygen is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Beamish, R. J. 1974. Loss of fish populations from unexploited remote lakes in Ontario, Canada as a consequence of atmospheric fallout of acid. Water Res. 8: 85–95.

    Article  CAS  Google Scholar 

  • Beamish, R. J. 1976. Acidification of lakes in Canada by acid precipitation and resulting effects on fishes. Water, Air and Soil Poll. 6: 501–514.

    Article  CAS  Google Scholar 

  • Beamish, R. J., W. L. Lockhart, J. C. Van Loon & H. H. Harvey 1975. Long term acidification of a lake and resulting effect on fishes. Ambio 4: 98–102.

    CAS  Google Scholar 

  • Cameron, J. N. 1976. Branchial ion uptake in Arctic grayling: resting values and effects of acid-base disturbance. J. Exp. Biol. 64: 711–725.

    CAS  Google Scholar 

  • Cameron, J. N. & D. J. Randall. 1972. The effect of increased ambient CO2 on arterial CO2 tension, CO2 content and pH in rainbow trout. J. Exp. Biol. 57: 673–680.

    CAS  Google Scholar 

  • Cogbill, C. V. & G. E. Likens. 1974. Acid precipitation in northeastern United States. Water Resour. Res. 10: 1133–1137.

    Article  CAS  Google Scholar 

  • Craig, G. R. & W. F. Baksi. 1977. The effects of depressed pH on flagfish reproduction, growth and survival. Water Res. 11: 621–626.

    Article  CAS  Google Scholar 

  • Daye, P. G. & E. T. Garside. 1976, Histopathologic changes in surficial tissues of brook trout, Salvelinus fontinalis (Mitchill), exposed to acute and chronic levels of pH. Can. J. Zool. 54: 2140–2155.

    CAS  Google Scholar 

  • Daye, P. G. & E. T. Garside. 1977. Lower lethal levels of pH for embryos and alevins of Atlantic salmon, Salmo salar L. Can. J. Zool. 55: 1504–1508.

    Article  CAS  Google Scholar 

  • Dively, J. L., J. E. Mudge, W. H. Neff & A. Anthony. 1977. Blood PO2, PCO 2 and pH changes in brook trout (Salvelinus fontinalis) exposed to sublethal levels of acidity. Comp. Biochem. Physiol. 57 (A): 347–351.

    Article  Google Scholar 

  • Doudoroff, P. & M. Katz. 1950. Critical review of literature on the toxicity of industrial wastes and their components to fish. I. Alkalies, acids and inorganic gases. Sew. and Ind. Wastes 22: 1432–1458.

    CAS  Google Scholar 

  • Dovland, H., E. Joranger & A. Semb. 1976. Deposition of air pollutants in Norway. pp. 15–35. In: F. H. Braekke (ed.) Impact of acid precipitations on forest and freshwater ecosystems in Norway. SNSF-project FR 6/76.

  • Dunson, W. A., F. Swarts & M. Silvestri. 1977. Exceptional tolerance to low pH of some tropical blackwater fish. J. Exp. Zool. 201: 157–162.

    Article  CAS  Google Scholar 

  • Eddy, F. B. 1974. In vitro blood carbon dioxide of the rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 47 (A): 129–140.

    Article  CAS  Google Scholar 

  • Eddy, F. B. 1976. Acid-base balance in rainbow trout (Salmo gairdneri) subjected to acid stresses. J. Exp. Biol. 64: 159–171.

    CAS  Google Scholar 

  • Eddy, F. B., J. P. Lomholt, R. E. Weber & K. Johansen. 1977. Blood respiratory properties of rainbow trout (Salmo gairdneri) kept in water of high CO2 tension. J. Ext. Biol. 67: 37–47.

    CAS  Google Scholar 

  • Ellis, M. M. 1937. Detection and measurement of stream pollution. Bull. No. 22, U.S. Bureau of Fisheries. Bull. Bur. Fisheries 48: 365–437.

    Google Scholar 

  • European Inland Fisheries Advisory Committee. 1969. Water quality criteria for European freshwater fish — extreme pH values and inland fisheries. Water Res. 3: 593–611.

    Article  Google Scholar 

  • Evans, D. H. 1975. Ion exchange mechanisms in fish gills. Comp. Biochem. Physiol. 51 (A): 491–495.

    Article  CAS  Google Scholar 

  • Galloway, J. N., G. E. Likens & E. S. Egerton. 1976. Acid precipitation in the northeastern United States: pH and activity. Science 194: 722–724.

    CAS  Google Scholar 

  • Hargis, J. R. 1976. Ventilation and metabolic rate of young rainbow trout (Salmo gairdneri) exposed to sublethal environmental pH. J. Exp. Zool. 196: 39–44.

    Article  CAS  Google Scholar 

  • Hazel, J. R., W. S. Garlick & P. A. Sellner. 1978. The effect of assay temperature upon the pH optima of enzymes from poikilotherms: a test of the alpha imidazole hypothesis. J. Comp. Physiol. 123: 97–104.

    CAS  Google Scholar 

  • Höglund, L. B. 1961. The reactions of fish in concentration gradients. Rep. Inst. Freshw. Res. Drottningholm 43: 1–147.

    Google Scholar 

  • Höglund, L. B. & J. Härdig. 1969. Reactions of young salmonids to sudden changes of pH, carbon-dioxide tension and oxygen content. Rep. Inst. Freshw. Res. Drottningholm 49: 76–119.

    Google Scholar 

  • Houston, A. H. 1971. Some comments upon acid-base balance in teleost fishes and its relationship to environmental temperature. Comp. Biochem. Physiol. 40 (A): 535–542.

    Article  CAS  Google Scholar 

  • Howell, B. J., F. W. Baumgardner, K. Bondi & H. Rahn. 1970. Acid-base balance in poikilotherms as a function of body temperature. Am. J. Physiol. 218: 600–606.

    CAS  Google Scholar 

  • Hughes, G. M. 1972. Morphometrics of fish gills. Resp. Physiol. 14: 1–25.

    Article  CAS  Google Scholar 

  • Hughes, G. M. & M. Morgan. 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.

    Google Scholar 

  • Jacobsen, O. J. 1977. Brown trout (Salmo trutta L.) growth at reduced pH. Aquaculture 11: 81–84.

    Article  Google Scholar 

  • Janssen, R. G. & D. J. Randall. 1975. The effect of changes in pH and PCO 2 in blood and water on breathing in rainbow trout, Salmo gairdneri. Resp. Physiol. 25: 23–245.

    Article  Google Scholar 

  • Jones, J. R. E. 1964. Fish and River Pollution. Butterworth, London. 203 pp.

    Google Scholar 

  • Ketstetter, T. H. & R. Mize. 1976. Responses of trout gill ion transport systems to acute acidosis. J. Exp. Biol. 64: 511–515.

    Google Scholar 

  • Kirk, W. L. 1974. The effects of hypoxia on certain blood and tissue electrolytes of channel catfish, Ictalurus punctatus (Rafrnesque). Trans. Amer. Fish. Soc. 103: 593–600.

    Article  Google Scholar 

  • Kwain, W. 1975. Effects of temperature on development and survival of rainbow trout, Salmo gairdneri, in acid waters. J. Fish. Res. Board Can. 32: 493–497.

    CAS  Google Scholar 

  • Leivestad, H., G. Hendrey, I. P. Muniz & E. Snekvik. 1976. Effects of acid precipitation on freshwater organisms. pp. 87–111. In: F. H. Braekke (ed.) Impact of acid precipitation on forest and freshwater ecosystems in Norway. SNSF-project FR 6/76.

  • Leivestad, H. & I. P. Muniz. 1976. Fish kill at low pH in a Norwegian river. Nature 259: 391–392.

    Article  CAS  Google Scholar 

  • Lloyd, R. & D. H. M. Jordan. 1964. Some factors affecting the resistance of rainbow trout (Salmo gairdneri, Richardson) to acid waters. Int. J. Air Wat. Poll. 8: 393–403.

    CAS  Google Scholar 

  • Lockhart, W. L. & A. Lutz. 1977. Preliminary biochemical observations of fishes inhabiting an acidified lake in Ontario, Canada. Water, Air and Soil 317–332.

  • Mazeaud, M. M., F. Mazeaud & E. M. Donaldson. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Trans. Amer. Fish. Soc. 106: 201–212.

    Article  CAS  Google Scholar 

  • McWilliams, P. G. & W. T. W. Potts. 1978. The effects of pH and calcium concentrations on gill potentials in the brown trout, Salmo trutta. J. Comp. Physiol. 126: 277–286.

    CAS  Google Scholar 

  • Menendez, R. 1976. Chronic effects of reduced pH on brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 33: 118–123.

    Google Scholar 

  • Mount, D. I. 1973. Chronic effect of low pH on fathead minnow survival, growth and reproduction. Water Res. 7: 987–993.

    Article  Google Scholar 

  • Mudge, J. E., J. L. Dively, W. H. Neff & A. Anthony. 1977. Interrenal histochemistry of acid-exposed brook trout, Salvelinus fontinalis (Mitchell). Gen. Comp. Endo. 31: 208–215.

    Article  CAS  Google Scholar 

  • Neville, C. M. 1979a Ventilatory response of rainbow trout (Salmo gairdneri) to increased H+ ion concentration in blood and water. Comp. Biochem. Physiol. 63A: 373–376.

    Article  Google Scholar 

  • Neville, C. M. 1979b. Sublethal effects of environmental acidification on rainbow trout (Salmo gairdneri). Jour. Fish. Res. Board Can. 36: 84–87.

    CAS  Google Scholar 

  • Packer, R. K. & W. A. Dunson. 1970. Effects of low environmental pH on blood pH and sodium balance of brook trout. J. Exp. Zool. 174: 65–72.

    Article  Google Scholar 

  • Packer, R. K. & W. A. Dunson. 1972. Anoxia and sodium loss associated with the death of brook trout at low pH. Comp. Biochem. Physiol. 41 (A): 17–26.

    Article  CAS  Google Scholar 

  • Powers, E. B. 1921. The physiology of the respiration of fishes in relation to the hydrogen ion concentration of the medium. J. Gen. Physiol. 4: 305–317.

    Article  Google Scholar 

  • Randall, D. J. & J. N. Cameron. 1973. Respiratory control of arterial pH as temperature changes in rainbow trout Salmo gairdneri. Am. J. Physiol. 225: 997–1002.

    CAS  Google Scholar 

  • Reeves, R. B. 1977. The interaction of body temperature and acid-base balance in ectothermic vertebrates. Ann. Rev. Physiol. 39: 559–586.

    Article  CAS  Google Scholar 

  • Root, R. W. & L. Irving. 1943. The effect of carbon dioxide and lactic acid on the oxygen combining power of whole and hemolyzed blood of the marine fish Tautoga onitis (Linn.). Biol. Bull. 84: 207.

    CAS  Google Scholar 

  • Ruby, S. M., J. Aczel & G. R. Craig. 1977. The effects of depressed pH on oogenesis in flagfish Jordanella floridae. Water Res. 11: 757–762.

    Article  CAS  Google Scholar 

  • Shelford, V. E. & E. B. Powers. 1913. The reactions of fishes to gradients of dissolved atmospheric gases. J. Exp. Zool. 14: 207–266.

    Article  CAS  Google Scholar 

  • Townsend, L. D. & H. Cheyne. 1944. The influence of hydrogen ion concentration on the minimum dissolved oxygen toleration of the silver salmon, Oncorhynchus kisutch (Walbaum). Ecology 25: 461–466.

    Article  CAS  Google Scholar 

  • Trojnar, J. R. 1977. Egg hatchability and tolerance of brook trout (Salvelinus fontinalis) fry at low pH. J. Fish. Res. Board Can. 34: 574–579.

    Google Scholar 

  • Ultsch, G. R. & G. Gros. 1979. Mucus as a diffusion barrier to oxygen: possible role in O2 uptake at low pH in carp (Cyprinus carpio) gills. Comp. Biochem. Physiol. 62A: 685–689.

    Article  Google Scholar 

  • Vaala, S. S. 1972. Erythrocytic indices of stress in brook trout (Salvelinus fontinalis) exposed to sublethal levels of acidity. Diss. Abstr. 32.

  • Vaala, S. S. & R. B. Mitchell. 1970. Blood oxygen-tension changes in acid-exposed brook trout. Penn. Acad. Sci. 44: 41–44.

    Google Scholar 

  • Westfall, B. A. 1945. Coagulation film anoxia in fishes. Ecology 26: 283–287.

    Article  CAS  Google Scholar 

  • Wiebe, A. H., A. M. McGavock, A. C. Fuller & H. C. Markus. 1934. The ability of freshwater fish to extract oxygen at different hydrogen ion concentrations. Physiol. Zool. 7: 435–448.

    CAS  Google Scholar 

  • Wood, C. M. & F. H. Caldwell. 1978. Renal regulation of acid-base balance in a freshwater fish. J. Exp. Zool. 205: 301–307.

    Article  CAS  Google Scholar 

  • Wood, C. M., B. R. McMahon & D. G. McDonald. 1977. An analysis of changes in blood pH following exhausting activity in the starry flounder, Platichthys stellatus. J. Exp. Biol. 69: 173–185.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromm, P.O. A review of some physiological and toxicological responses of freshwater fish to acid stress. Environ Biol Fish 5, 79–93 (1980). https://doi.org/10.1007/BF00000954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00000954

Keywords

Navigation