Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 112))

Abstract

DFT is often used to predict the energetics of transition metal compounds. In particular, energy differences between states of different spin are of great interest. This review discusses the accuracy of such computations for spin-state splittings of monometallic complexes where the differences in spin-pairing occur mostly or exclusively on the metal itself. Large differences are found for computed splittings using different functionals, in particular between pure and hybrid functionals. An optimum exact exchange admixture of ~15% seems to yield accurate results in many cases, but experimental and especially theoretical uncertainties suggest that this should not be relied upon, and the development of new functionals is seen to be highly desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

TM:

Transition Metal

DFT:

Density functional theory

HF:

Hartree-Fock

References

  1. Poli R (1996) Chem Rev 96:2135

    Google Scholar 

  2. Harvey JN (2001) In: Cundari TR (ed) Computational organometallic chemistry. Marcel Dekker, New York

    Google Scholar 

  3. Poli R, Harvey JN (2003) Chem Soc Rev 32:1

    Google Scholar 

  4. Harvey JN, Poli R, Smith KM (2003) Coord Chem Rev 238:347

    Google Scholar 

  5. Illas F, Moreira IDR, de Graaf C, Barone V (2000) Theor Chem Acc 104:265

    Google Scholar 

  6. Ruiz E, Rodriguez-Fortea A, Cano J, Alvarez S, Alemany P (2003) J Comput Chem 24:982

    Google Scholar 

  7. Ciofini I, Daul CA (2003) Coord Chem Rev 238:187

    Google Scholar 

  8. Filatov M, Harris N, Shaik S (1999) Angew Chem Int Edit 38:3510

    Google Scholar 

  9. Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester, UK

    Google Scholar 

  10. Siegbahn PEM (1996) In: Prigogine I, Rice SA (eds) Advances in chemical physics, Vol XCIII, Wiley, New York, p 333

    Google Scholar 

  11. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  12. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Google Scholar 

  13. Boese AD, Doltsinis NL, Handy NC, Sprik M (2000) J Chem Phys 112:1670

    Google Scholar 

  14. Hammer B, Hansen LB, Norskov JK (1999) Phys Rev B 59:7413

    Google Scholar 

  15. Becke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  16. Gill PMW (1996) Mol Phys 89:433

    Google Scholar 

  17. Perdew JP (1986) Phys Rev B 33:8822

    Google Scholar 

  18. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Google Scholar 

  19. Becke AD (1993) J Chem Phys 98:1372

    Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  21. Bauschlicher CW, Partridge H (1995) J Chem Phys 103:1788

    Google Scholar 

  22. Scott AP, Platz MS, Radom L (2001) J Am Chem Soc 123:6069

    Google Scholar 

  23. Worthington SE, Cramer CJ (1997) J Phys Org Chem 10:755

    Google Scholar 

  24. Harvey JN (unpublished work)

    Google Scholar 

  25. Baerends EJ, Branchadell V, Sodupe M (1997) Chem Phys Lett 265:481

    Google Scholar 

  26. Mineva T, Goursot A, Daul C (2001) Chem Phys Lett 350:147

    Google Scholar 

  27. Weinert M, Watson RE, Fernando GW (2002) Phys Rev A 66:032508

    Google Scholar 

  28. Markovits A, Paniagua JC, Lopez N, Minot C, Illas F (2003) Phys Rev B 67:115417

    Google Scholar 

  29. Daniel C, Benard M, Dedieu A, Wiest R, Veillard A (1984) J Phys Chem 88:4805

    Google Scholar 

  30. Barnes LA, Rosi M, Bauschlicher CW (1991) J Chem Phys 94:2031

    Google Scholar 

  31. Delley B, Wrinn M, Luthi HP (1994) J Chem Phys 100:5785

    Google Scholar 

  32. Wang WH, Weitz E (1997) J Phys Chem A 101:2358

    Google Scholar 

  33. Decker SA, Klobukowski M (1998) J Am Chem Soc 120:9342

    Google Scholar 

  34. Gonzalez-Blanco O, Branchadell V (1999) J Chem Phys 110:778

    Google Scholar 

  35. Matveev A, Staufer M, Mayer M, Rosch N (1999) Int J Quantum Chem 75:863

    Google Scholar 

  36. Harvey JN, Aschi M (2003) Faraday Discuss 124:129

    Google Scholar 

  37. Kang JK, Musgrave CB (2001) J Chem Phys 115:11040

    Google Scholar 

  38. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811

    Google Scholar 

  39. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48

    Google Scholar 

  40. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729

    Google Scholar 

  41. Deng LQ, Margl P, Ziegler T (1999) J Am Chem Soc 121:6479

    Google Scholar 

  42. Khoroshun DV, Musaev DG, Vreven T, Morokuma K (2001) Organometallics 20:2007

    Google Scholar 

  43. Margl P, Deng LQ, Ziegler T (1999) Organometallics 18:5701

    Google Scholar 

  44. Ghosh A, Taylor PR (2003) Curr Opin Chem Biol 7:113

    Google Scholar 

  45. Scherlis DA, Estrin DA (2002) Int J Quantum Chem 87:158

    Google Scholar 

  46. Paulsen H, Duelund L, Winkler H, Toftlund H, Trautwein HX (2001) Inorg Chem 40:2201

    Google Scholar 

  47. Reiher M (2002) Inorg Chem 41:6928

    Google Scholar 

  48. Chen GJ, Espinosa-Perez G, Zentella-Dehesa A, Silaghi-Dumitrescu I, Lara-Ochoa F (2000) Inorg Chem 39:3440

    Google Scholar 

  49. Chen GJ, Liu RZ, Silaghi-Dumitrescu I, Espinosa-Perez G, Zentella-Dehesa A, Lara-Ochoa F (2001) Int J Quantum Chem 83:60

    Google Scholar 

  50. Brandt P, Norrby PO, Daly AM, Gilheany DG (2002) Chem-Eur J 8:4299

    Google Scholar 

  51. Linde C, Akermark B, Norrby PO, Svensson M (1999) J Am Chem Soc 121:5083

    Google Scholar 

  52. Abashkin YG, Collins JR, Burt SK (2001) Inorg Chem 40:4040

    Google Scholar 

  53. Khavrutskii IV, Musaev DG, Morokuma K (2003) Inorg Chem 42:2606

    Google Scholar 

  54. Cavallo L, Jacobsen H (2003) J Phys Chem A 107:5466

    Google Scholar 

  55. Jensen VR, Poli R (2003) J Phys Chem A 107:1424

    Google Scholar 

  56. Ball DM, Buda C, Gillespie AM, White DP, Cundari TR (2002) Inorg Chem 41:152

    Google Scholar 

  57. Szilagyi RK, Metz M, Solomon EI (2002) J Phys Chem A 106:2994

    Google Scholar 

  58. Wilson PJ, Tozer DJ (2002) J Chem Phys 116:10139

    Google Scholar 

  59. Siegbahn PEM (1996) J Am Chem Soc 118:1487

    Google Scholar 

  60. Carréon-Macedo J-L, Harvey JN (2004) J Am Chem Soc 126:5789

    Google Scholar 

  61. Lee TJ, Taylor PR (1989) Int J Quantum Chem, Quantum Chem Symp 23:199

    Google Scholar 

  62. Gagliardi L, Ziegler, Neville S, Garner, Green, Harvey, Eisenstein, Bursten, Kaltsoyannis, Macgregor, Perutz (2003) Faraday Discuss 124:145

    Google Scholar 

  63. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Google Scholar 

  64. Curtiss LA, Raghavachari K (2002) Theor Chem Acc 108:61

    Google Scholar 

  65. Pierloot K (2003) Mol Phys 101:2083

    Google Scholar 

  66. Roos BO, Widmark PO, Gagliardi L (2003) Faraday Discuss 124:57

    Google Scholar 

  67. Jensen VR, Thiel W (2001) Organometallics 20:4852

    Google Scholar 

  68. Schmiedekamp AM, Ryan MD, Deeth RJ (2002) Inorg Chem 41:5733

    Google Scholar 

  69. Meyer B, Marx D (2003) Phys Rev B 67:035403

    Google Scholar 

  70. Ziegler T (2003) Faraday Discuss 124:287

    Google Scholar 

  71. Patchkovskii S, Ziegler T (2002) J Chem Phys 116:7806

    Google Scholar 

  72. Cremer D (2001) Mol Phys 99:1899

    Google Scholar 

  73. Polo V, Kraka E, Cremer D (2002) Mol Phys 100:1771

    Google Scholar 

Download references

Acknowledgements

Dr. F. R. Manby is thanked for helpful comments. JNH is an EPSRC advanced research fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy N. Harvey .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Harvey, J.N. (2004). DFT Computation of Relative Spin-State Energetics of Transition Metal Compounds. In: Principles and Applications of Density Functional Theory in Inorganic Chemistry I. Structure and Bonding, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b97939

Download citation

  • DOI: https://doi.org/10.1007/b97939

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21860-9

  • Online ISBN: 978-3-540-40924-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics