Skip to main content

Heat Capacity Studies of Spin Crossover Systems

  • Chapter
Spin Crossover in Transition Metal Compounds III

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 235))

Abstract

As the spin crossover phenomena occurring in Oh symmetry involve a transfer of electrons between the eg and t2g orbitals, the metal-to-ligand bond distances change remarkably. This brings about a drastic change in the density of vibrational states, mainly the metal-ligand skeletal vibrational modes. Thus, the transition entropy due to the spin crossover involves a dominant contribution from the non-electronic vibrations in addition to the contribution from a change in the spin multiplicity. It is concluded that a coupling between the electronic states and the phonon system plays a fundamental role in the spin crossover occurring in the solid state. Heat capacity is a physical quantity containing contributions from all kinds of molecular degrees of freedom. Consequently calorimetry is a suitable experimental tool to help elucidate the mechanism involved in spin crossover phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

phen:

1,10-Phenanthroline

LS:

Low spin

HS:

High spin

2-pic:

2-Aminomethylpyridine or 2-picolylamine

solv:

Solvated molecule

DTA:

Differential thermal analysis

acpa:

Hacpa=N-(1-acetyl-isopropylidene) (2-pyridylmethyl) amine

depe:

1,2-Bis(diethylphosphino)ethane

3EtO-salAPA:

3EtO-salAPAH is the Schiff base condensed from 1 mol of 3-ethoxysalicylaldehyde with 1 mol of N-aminopropylaziridine

S :

Molar entropy

H :

Molar enthalpy

G :

Molar Gibbs energy

R :

Gas constant

C p :

Molar heat-capacity under constant pressure

T :

Temperature

T 1/2 :

Spin transition temperature

γHS :

High-spin fraction

K :

Equilibrium constant

μ eff :

Effective magnetic moment

References

  1. König E, Madeja K (1967) Inorg Chem 6:48

    Google Scholar 

  2. Baker WA Jr, Bobonich HM (1964) Inorg Chem 3:1184

    Google Scholar 

  3. Sorai M, Seki S (1972) J Phys Soc Jpn 33:575

    Google Scholar 

  4. Sorai M, Seki S (1974) J Phys Chem Solids 35:555

    Google Scholar 

  5. Takemoto JH, Hutchinson B (1973) Inorg Chem 12:705

    Google Scholar 

  6. Sorai M (2001) Bull Chem Soc Jpn 74:2223

    Google Scholar 

  7. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024

    Google Scholar 

  8. Renovitch GA, Baker WA Jr (1967) J Am Chem Soc 89:6377

    Google Scholar 

  9. Sorai M, Ensling J, Hasselbach KM, Gütlich P (1977) Chem Phys 20:197

    Google Scholar 

  10. Greenaway AM, Sinn E (1978) J Am Chem Soc 100:8080

    Google Scholar 

  11. Mikami M, Konno M, Saito Y (1979) Chem Phys Lett 63:566

    Google Scholar 

  12. Katz B, Strouse CE (1979) J Am Chem Soc 101:6214

    Google Scholar 

  13. Greenaway AM, O’Connor CJ, Schrock A, Sinn E (1979) Inorg Chem 18:2692

    Google Scholar 

  14. Mikami M, Konno M, Saito Y (1980) Acta Crystallogr Sect B 36:275

    Google Scholar 

  15. Katz B, Strouse CE (1980) Inorg Chem 19:658

    Google Scholar 

  16. Mikami-Kido M, Saito Y (1982) Acta Crystallogr Sect B 38:452

    Google Scholar 

  17. Wiehl L, Kiel G, Köhler CP, Spiering H, Gütlich P (1986) Inorg Chem 25:1565

    Google Scholar 

  18. Kaji K, Sorai M (1985) Thermochim Acta 88:185

    Google Scholar 

  19. Köppen H, Müller EW, Köhler CP, Spiering H, Meissner E, Gütlich P (1982) Chem Phys Lett 91:348

    Google Scholar 

  20. Sasaki N, Kambara T (1989) Phys Rev B Condens Matter 40:2442

    Google Scholar 

  21. Real JA, Bolvin H, Bousseksou A, Dwarkin A, Kahn O, Varret F, Zarembowitch J (1992) J Am Chem Soc 114:4650

    Google Scholar 

  22. a) Romstedt H, Hauser A, Spiering H (1998) J Phys Chem Solids 59:265; b) Romstedt H, Spiering H, Gütlich P (1998) J Phys Chem Solids 59:1353

    Google Scholar 

  23. Kohlhaas T, Spiering H, Gütlich P (1997) Z Physik B Condens Matter 102:455

    Google Scholar 

  24. Garcia Y, Kahn O, Rabardel L, Chansou B, Salmon L, Tuchagues JP (1999) Inorg Chem 38:4663

    Google Scholar 

  25. Sorai M, Seki S (1972) J Phys Soc Jpn 32:382

    Google Scholar 

  26. Nakamoto T, Tan ZC, Sorai M (2001) Inorg Chem 40:3805

    Google Scholar 

  27. Nakamoto T, Bhattacharjee A, Sorai M (2004) Bull Chem Soc Jpn 77:in press

    Google Scholar 

  28. Sorai M, Ensling J, Gütlich P (1976) Chem Phys 18:199

    Google Scholar 

  29. Gütlich P, Link R, Steinhäuser HG (1978) Inorg Chem 17:2509

    Google Scholar 

  30. Kaji K, Sorai M (1986) Thirty-sixth Annual Meeting on Coordination Chemistry, Nagoya, 2B08

    Google Scholar 

  31. Köhler CP, Spiering H, Gütlich P (1990) J Phys Chem Solids 51:239

    Google Scholar 

  32. Jakobi R, Spiering H, Wiehl L, Gmelin E, Gütlich P (1988) Inorg Chem 27:1823

    Google Scholar 

  33. Jakobi R, Spiering H, Gütlich P (1992) J Phys Chem Solids 53:267

    Google Scholar 

  34. Jakobi R, Romstedt H, Spiering H, Gütlich P (1992) Angew Chem Int Ed 31:178

    Google Scholar 

  35. Sorai M, Maeda Y, Oshio H (1990) J Phys Chem Solids 51:941

    Google Scholar 

  36. Frenkel J (1947) Kinetic theory of liquids. Oxford University Press, London

    Google Scholar 

  37. Doan PE, McGarvey BR (1990) Inorg Chem 29:874

    Google Scholar 

  38. Sorai M, Yumoto Y, Halepoto DM, Larkworthy LF (1993) J Phys Chem Solids 54:421

    Google Scholar 

  39. Conti AJ, Chadha RK, Sena KM, Rheingold AL, Hendrickson DN (1993) Inorg Chem 32:2670

    Google Scholar 

  40. Conti AJ, Kaji K, Nagano Y, Sena KM, Yumoto Y, Chadha RK, Rheingold AL, Sorai M, Hendrickson DN (1993) Inorg Chem 32:2681

    Google Scholar 

  41. Kaji K, Sorai M, Conti AJ, Hendrickson DN (1993) J Phys Chem Solids 54:1621

    Google Scholar 

  42. Sorai M, Nagano Y, Conti AJ, Hendrickson DN (1994) J Phys Chem Solids 55:317

    Google Scholar 

  43. Sorai M, Yumoto Y, Hendrickson DN (1992) Forty-second Annual Meeting on Coordination Chemistry. Nara, Japan, 3B08

    Google Scholar 

Download references

Acknowledgements

I would like to thank my colleagues and students, in particular Prof. Philipp Gütlich and Prof. David N. Hendrickson, for their valued collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Sorai .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Sorai, M. Heat Capacity Studies of Spin Crossover Systems. In: Spin Crossover in Transition Metal Compounds III. Topics in Current Chemistry, vol 235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95426

Download citation

  • DOI: https://doi.org/10.1007/b95426

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40395-1

  • Online ISBN: 978-3-540-44984-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics