Skip to main content

Chemistry and Physics of Primitive Membranes

  • Chapter
  • First Online:
Prebiotic Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 259))

Abstract

A membrane boundary structure was essential for the advent of cellular life. The membranes of contemporary cells are composed of a mosaic of proteins embedded in a bimolecular layer of phospholipids, each of which requires a complex enzymatic pathway for its synthesis. The earliest forms of life could not have had such a highly evolved pathway in place. Amphiphilic monocarboxylic acids are present in carbonaceous meteorites and can be synthesized under simulated geochemical conditions. Such compounds have physical and chemical properties that allow them to assemble into bilayer membranes and are therefore plausible components of the first cellular membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyson F (1999) The Origins of Life. Princeton University Press, Princeton, NJ

    Google Scholar 

  2. Deamer D, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ (2002) Astrobiology 2:371–382

    Article  PubMed  Google Scholar 

  3. Segré S, Deamer DW, Lancet D (2001) Orig Life Evol Biosphere 31:119–145

    Article  PubMed  Google Scholar 

  4. Cavalier-Smith T (1987) Cold Spring Harbor Symposia on Quantitative Biology, Vol LII, pp 805–824

    Google Scholar 

  5. Koch AL, Schmidt TM (1991) J Mol Evol 33:297–304

    Article  PubMed  Google Scholar 

  6. Morowitz HJ (1992) Beginnings of Cellular Life. Yale University Press, New Haven, CT

    Google Scholar 

  7. Miller SL (1953) Science 117:528–529

    PubMed  Google Scholar 

  8. Miller SL, Urey HC (1959) Science 130:245–251

    PubMed  Google Scholar 

  9. Miller SL, Schlesinger G (1984) Orig Life 14:83

    Article  PubMed  Google Scholar 

  10. Nooner DW, Gilbert JM, Gelpi E, Oró J (1976) Geochim Cosmochim Acta 40:915–24

    Article  Google Scholar 

  11. McCollom TM, Ritter G, Simoneit BRT (1999) Orig Life Evol Biosphere 29:153–166

    Article  PubMed  Google Scholar 

  12. Rushdi AI, Simoneit B (2001) Orig Life Evol Biosphere 31:103–118

    Article  PubMed  Google Scholar 

  13. Kvenvolden KA, Lawless JG, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Nature 28:923

    Article  Google Scholar 

  14. Cronin JR, Pizzarello S, Cruikshank DP (1988) In: Kerridge JF, Matthews MS (eds) Meteorites and the Early Solar System. University of Arizona Press, Tucson, AZ, p 819–857

    Google Scholar 

  15. Sephton MA (2002) Nat Prod Rep 19:292–311

    Article  PubMed  Google Scholar 

  16. Holland HD (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, NJ

    Google Scholar 

  17. Kasting JF, Brown LL (1998) In: Brack A (ed) The Molecular Origins of Life. Cambridge University Press, Cambridge, UK, pp 35–56

    Google Scholar 

  18. Oró J (1961) Nature 190:389–390

    Google Scholar 

  19. Delsemme A (1984) Orig Life 14:51–60

    Article  Google Scholar 

  20. Anders E (1989) Nature 342:255–257

    Article  PubMed  Google Scholar 

  21. Chyba CF, Sagan C (1992) Nature 355:125–13

    Article  PubMed  Google Scholar 

  22. Maurette M (1998) In: Brack A (ed) The Molecular Origins of Life. Cambridge University Press, Cambridge, UK, pp 147–186

    Google Scholar 

  23. Ehrenfreund P, Charnley SB (2000) Ann Rev Astron Astrophys 38:427–483

    Article  Google Scholar 

  24. Sandford SA (1996) Meteoritics Planet Sci 31:449–476

    Google Scholar 

  25. Greenberg M, Mendoza-Gomez CX (1993) In: Greenberg M, Mendoza-Gomez CX, Pironella V (eds) The Chemistry of Life's Origins. Kluwer, Dordrecht, pp 1–32

    Google Scholar 

  26. Bernstein MP, Sandford SA, Allamandola, LJ, Chang S, Scharberg MA (1995) Astrophys J 454:327–344

    Article  Google Scholar 

  27. Ehrenfreund P, d'Hendecourt L, Charnley SB, Ruiterkamp R (2001) J Geophys Res 106:33291–33302

    Article  Google Scholar 

  28. Muñoz-Caro GM, Meierhenrich WA, Schutte WA, Barbier B, Arcones Segovia A, Rosenbauer W, Thriemann HP, Brack A, Greenberg JM (2002) Nature 416:403–406

    Article  PubMed  Google Scholar 

  29. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ (2002) Nature 416:401

    Article  PubMed  Google Scholar 

  30. Bernstein MP, Dworkin JP, Sandford SA, Allamandola LJ (2001) Meteoritics Planet Sci 36:351–258

    Google Scholar 

  31. Dworkin JP, Deamer DW, Sandford SA, Allamandola LJ (2001) Proc Natl Acad Sci USA 98:815–819

    Article  PubMed  Google Scholar 

  32. Pierazzo E, Chyba C (1999) Meteoritics Planet Sci 32:090–918

    Google Scholar 

  33. Krishnamurthy RV, Epstein S, Cronin JR, Pizzarello S, Yuen GU (1992) Geochim Cosmochim Acta 56:4045–4058

    Article  PubMed  Google Scholar 

  34. Sandford SA, Bernstein MP, Dworkin JP (2001) Meteoritics Planet Sci 36:1117–1133

    Google Scholar 

  35. Love SG, Brownlee, DE (1993) Science 262:550–553

    Google Scholar 

  36. Hargreaves WW, Mulvihill SJ, Deamer DW (1977) Nature 266:78–80

    Article  PubMed  Google Scholar 

  37. Rao M, Eichberg MR, Oró J (1982) J Mol Evol 18:196–202

    Article  PubMed  Google Scholar 

  38. Epps DE, Sherwood E, Eichberg J, Oró J (1978) J Mol Evol 6:279–92

    Article  Google Scholar 

  39. Ourisson G, Nakatani T (1994) Chem Biol 1:11

    Article  PubMed  Google Scholar 

  40. Conde-Frieboes K, Blochliger E (2001) Biosystems 1:109–114

    Article  Google Scholar 

  41. Singer SJ, Nicolson GL (1972) Science 175:720–31

    PubMed  Google Scholar 

  42. Frye LD, Edidin M (1970) J Cell Sci 7:319–35

    PubMed  Google Scholar 

  43. Oliver A, Deamer DW (1994) Biophys J 66:1364–79

    PubMed  Google Scholar 

  44. Vlassov A, Khvorova A, Yarus M (2001) Proc Natl Acad Sci USA 98:7706

    Article  PubMed  Google Scholar 

  45. Pohorille A, Schweighofer K, Wilson MA (2005) Astrobiology 1–17

    Google Scholar 

  46. Chakrabarti A, Deamer DW (1994) J Mol Evol 39:1–5

    PubMed  Google Scholar 

  47. Parsegian A (1969) Nature 221:844–846

    PubMed  Google Scholar 

  48. Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (1996) Biophys J 70:339–348

    PubMed  Google Scholar 

  49. Monnard P-A, Deamer DW (2001) Orig Life Evol Biosphere 31:147–155

    Article  PubMed  Google Scholar 

  50. Walde P, Wick R, Fresta M, Mangone A, Luisi PL (1994) J Am Chem Soc 116:11649–11654

    Article  Google Scholar 

  51. Hanczyc MM, Fujikawa SM, Szostak JW (2003) Science 302:618–22

    Article  PubMed  Google Scholar 

  52. Hanczyc MM, Szostak JW (2004) Curr Opin Chem Biol 28:660–664

    Article  Google Scholar 

  53. Shew R, Deamer D (1983) Biochim Biophys Acta 816:1–8

    Google Scholar 

  54. Pick U (1981) Arch Biochem Biophys 212:186

    Article  PubMed  Google Scholar 

  55. Nasseau M, Boublik Y, Meier W, Winterhalter M, Fournier D (2001) Biotech Bioeng 75:615

    Article  Google Scholar 

  56. Stribling R, Miller SL (1987) Orig Life Evol Biosphere 17:261–73

    PubMed  Google Scholar 

  57. Cairns-Smith G (1982) Genetic Takeover and the Mineral Origins of Life. Cambridge University Press, Cambridge, UK

    Google Scholar 

  58. Hazen RM, Filley TR, Goodfriend GM (2001) Proc Natl Acad Sci USA 98:5487–5490

    Article  PubMed  Google Scholar 

  59. Corliss JB, Baross JA, Hoffman SE (1981) Oceanol Acta. Proceedings of the 26th International Geological Congress, Paris, pp 59–69

    Google Scholar 

  60. Baross JA, Hoffman SE (1985) Orig Life 15:327

    Article  Google Scholar 

  61. Pace NR (1991) Cell 65:531–533

    Article  PubMed  Google Scholar 

  62. Wächtershäuser G (1988) Syst Appl Microbiol 10:207–210

    Google Scholar 

  63. Wächtershäuser G (1988) Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  64. Huber C, Wächtershäuser G (1997) Science 276:245

    Article  PubMed  Google Scholar 

  65. Huber C, Wächtershäuser G (1998) Science 281:670–672

    Article  PubMed  Google Scholar 

  66. Martin W, Russell MJ (2003) Phil Trans R Soc Lond B 358:59–83

    Article  Google Scholar 

  67. Lawless JG, Yuen GU (1979) Nature 282:396–398

    Article  Google Scholar 

  68. Naraoka H, Shimoyama A, Komiya M, Harada H (1999) Orig Life Evol Biosphere 29:187–201

    Article  PubMed  Google Scholar 

  69. Deamer DW (1985) Nature 317:792–794

    Article  Google Scholar 

  70. Deamer DW, Pashley RM (1989) Orig Life Evol Biosphere 19:21–33

    Article  PubMed  Google Scholar 

  71. Hargreaves WR, Deamer DW (1978) Biochemistry 17:3759–3768

    Article  PubMed  Google Scholar 

  72. Apel CL, Deamer DW, Mautner M (2002) Biochim Biophys Acta 1559:1

    PubMed  Google Scholar 

  73. Monnard P-A, Apel CL, Kanavarioti A, Deamer DW (2002) Astrobiology 2:139

    Article  PubMed  Google Scholar 

  74. Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DL (2001) Science 292:1319–1325

    Article  PubMed  Google Scholar 

  75. Luisi PL (1996) Adv Chem Phys 92:425–438

    Google Scholar 

  76. Pohorille A, Deamer DW (2002) Trends Biotechnol 20:123

    Article  PubMed  Google Scholar 

  77. Szostak JW, Bartel DP, Luisi PL (2001) Nature 409:387–390

    Article  PubMed  Google Scholar 

  78. Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH, Stadelr PF, Bedau MA (2004) Science 303:963–5

    Article  PubMed  Google Scholar 

  79. Chakrabarti A, Breaker RR, Joyce GF, Deamer DW (1994) J Mol Evol 39:555–559

    Article  PubMed  Google Scholar 

  80. Walde P, Goto A, Monnard P-A, Wessicken M, Luisi PL (1994) J Am Chem Soc 116:7541–7547

    Article  Google Scholar 

  81. Oberholzer T, Wick R, Luisi PL, Biebricker CK (1995) Biochem Biophys Res Commun 207:250

    Article  PubMed  Google Scholar 

  82. Oberholzer T, Albrizio M, Luisi PL (1995) Curr Biol 2:677

    Google Scholar 

  83. Monnard P-A, Deamer DW (2002) Anat Rec 268:196

    Article  PubMed  Google Scholar 

  84. Yu W, Sato K, Wakabayashi M, Nakaishi T, K-Mitamura EP, Shima Y, Urabe I, Yomo T (2001) J Biosci Bioengin 92:590

    Article  PubMed  Google Scholar 

  85. Nomura S, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y, Yoshikawa K (2003) Chem Biochem 4:1172-1175

    Google Scholar 

  86. Noireaux V, Libchaber A (2004) Proc Natl Acad Sci USA 101:17669–74

    Article  PubMed  Google Scholar 

  87. Ishikawa K, Sato K, Shima Y, Urabe I, Yomo T (2004) FEBS Lett 576:387

    Article  PubMed  Google Scholar 

  88. Beaudry AA, Joyce GF (1992) Science 342:255

    Google Scholar 

  89. Wilson C, Szostak JW (1994) Nature 374:777–782

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Deamer .

Editor information

Peter Walde

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Deamer, D.W., Dworkin, J.P. Chemistry and Physics of Primitive Membranes. In: Walde, P. (eds) Prebiotic Chemistry. Topics in Current Chemistry, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136806

Download citation

Publish with us

Policies and ethics