Skip to main content

Cooperativity in Spin Crossover Systems: Memory, Magnetism and Microporosity

  • Chapter
Spin Crossover in Transition Metal Compounds I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 233))

Abstract

This review deals with spin crossover effects in small polynuclear clusters, particularly dinuclear species, and in extended network molecular materials, some of which have interpenetrated network structures. Fe(II)Fe(II) species are the main focus but Co(II)Co(II) compounds are included. The sections on dinuclear compounds include short background reviews on (i) synergism of SCO and spin-spin magnetic exchange (ii) cooperativity (memory effects) in polynuclear compounds, and (iii) the design of dinuclear SCO compounds using structural and ligand field concepts. Known examples of dinuclear compounds are reviewed and our new examples are described, these being based on hydrogen-bonded water to pyrazole ligand linkages. Incomplete (half) SCO transitions, due to HS–HS to HS–LS transformations, are commonly observed, with no thermal hysteresis. New and ground-breaking studies of microporous extended network Fe(II)(NCS)2(py)4-type systems reveal reversible host-guest systems which display reversible sorption/desorption of guest molecules and SCO behaviour that varies with exchange of the guests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

1,10-phen:

1,10-Phenanthroline

2,2′-bipy:

2,2′-Bipyridine

2-pic:

2(Aminomethyl)pyridine (2-picolylamine)

4,4′-azpy:

4,4′-Azodipyridine

bpb:

1,4-Bis(4-pyridyl)butadiyne

bpp:

2,6-Bis(pyrazol-3-yl)pyridine

bptz:

3,6-Bis(2-pyridyl)tetrazine

bpym:

2,2′-Bipyrimidine

bt:

2,2′-Bi-2-thiazoline

btb:

p-Bis((1,2,4)-triazole)benzene

btpa:

N,N,N′,N′-Tetrakis(2-pyridylmethyl)-6,6′-bis(aminomethyl)-2,2′-Bipyridine

btr:

4,4′-Bis(1,2,4-triazole)

btzb:

1,4-Bis(tetrazol-1-yl)butane

btzp:

1,2-Bis(tetrazol-1-yl)propane

dca :

Dicyanamide (N(CN)2 )

H2bptz:

3,6-Bis(2-pyridyl)-1,4-dihydrotetrazine

HC(pz)3 :

Tris(pyrazol-1-yl)methane

H2fsaen:

N,N′-ethylenebis(3-carboxysalicylaldimine)

H-bonding:

Hydrogen bonding

LIESST:

Light-induced excited spin state trapping

LITH:

Light-induced thermal hysteresis

p-MeOptrz:

4-(p-Methoxyphenyl)-1,2,4-triazole

p-tol-trz:

4-(p-Tolyl)-1,2,4-triazole

py:

Pyridine

pypz:

2-(Pyrazol-3-yl)pyridine

py-trz:

4-(2′-Pyridyl)1,2,4-triazole

RT:

Room temperature

R-trz:

R-substituted triazole in 4-position

SCO:

Spin crossover

tcm :

Tricyanomethanide (C(CN)3 )

tmpdtne:

1,2-Bis(N,N′-bis(2-pyridylmethyl)-1,4,7-triazacyclonon-1-yl)ethane

tpa:

Tri(2-pyridylmethyl)amine

tpa′:

(2-Pyridylethyl)bis(2-pyridylmethyl)amine

tvp:

trans-1,2-Bis(4-pyridyl)ethene

2J :

Exchange coupling constant (–2J S 1 S 2 Hamiltonian)

μ-X:

Bridging group X

μ eff :

Effective magnetic moment

μ B :

Bohr magneton

χ :

Molar magnetic susceptibility

1-D:

One-dimensional

2-D:

Two-dimensional

3-D:

Three-dimensional

k :

Boltzmann constant

ΔE o :

Difference in energy

Δ:

Octahedral ligand-field splitting (10Dq)

B :

Racah parameter for interelectronic repulsion

Τ 1/2 :

Transition temperature (at 50% HS, 50% LS)

HS:

High-spin

LS:

Low-spin

References

  1. Kennedy BJ, McGrath AC, Murray KS, Skelton BW, White AH (1987) Inorg Chem 26:483

    Google Scholar 

  2. Murray KS, Sheahan RM (1976) J Chem Soc Dalton Trans 999

    Google Scholar 

  3. Kennedy BJ, Fallon GD, Gatehouse BMKC, Murray KS (1984) Inorg Chem 23:580

    Google Scholar 

  4. Murray KS, Fallon GD, Hockless DCR, Lu KD, Moubaraki B, van Langenberg K (1996) In: Turnbull MM, Sugimoto T, Thompson LK (eds) Molecule-Based Magnetic Materials. ACS Symposium Series 644, p 201

    Google Scholar 

  5. Batten SR, Jensen P, Kepert CJ, Kurmoo M, Moubaraki B, Murray KS, Price DJ (1999) J Chem Soc Dalton Trans 2987

    Google Scholar 

  6. Brooker S, Plieger PG, Moubaraki B, Murray KS (1999) Angew Chem Int Ed 38:408

    Google Scholar 

  7. Real JA (1999) In: Sauvage JP (ed) Transition Metals in Supramolecular Chemistry. Wiley, NY, p 53

    Google Scholar 

  8. Thomann M, Kahn O, Guilhem J, Varret F (1994) Inorg Chem 33:6029

    Google Scholar 

  9. Létard J-F, Real JA, Moliner N, Gaspar AB, Capes L, Cador O, Kahn O (1999) J Am Chem Soc 121:10630

    Google Scholar 

  10. Real JA, Bolvin H, Bousseksou A, Dworkin A, Kahn O, Varret F, Zarembowitch J (1992) J Am Chem Soc 114:4650

    Google Scholar 

  11. Vos G, de Graaff RAG, Haasnoot JG, van der Kraan AM, de Vaal P, Reedijk J (1984) Inorg Chem 23:2905

    Google Scholar 

  12. Breuning E, Ruben M, Lehn JM, Renz F, Garcia Y, Ksenofontov V, Gütlich P, Wegelius E, Rissanen K (2000) Angew Chem Int Ed 39:2504

    Google Scholar 

  13. Garcia Y, van Koningsbruggen PJ, Lapouyade R, Fournes L, Rabardel L, Kahn O, Ksenofontov V, Levchenko G, Gutlich P (1998) Chem Mater 10:2426

    Google Scholar 

  14. Lavrenova LG, Yudina NG, Ikorskii VN, Varnek VA, Oglezneva IM, Larionov SV (1995) Polyhedron 14:1333

    Google Scholar 

  15. Haasnoot JG (2000) Coord Chem Rev 200:131

    Google Scholar 

  16. Gütlich P, Garcia Y, Goodwin HA (2000) Chem Soc Rev 29:419

    Google Scholar 

  17. Garcia Y, van Koningsbruggen PJ, Lapouyade R, Rabardel L, Kahn O, Wieczorek M, Bronisz R, Ciunik Z, Rudolf MF (1998) CR Acad Sci Paris T1, Series IIC:523

    Google Scholar 

  18. Real JA, Andres E, Muñoz MC, Julve M, Granier T, Bousseksou A, Varret F (1995) Science 268:265

    Google Scholar 

  19. Jensen P, Batten SR, Moubaraki B, Murray KS (2002) J Chem Soc Dalton Trans 3712

    Google Scholar 

  20. Kepert CJ, Rosseinsky MJ (1999) Chem Commun 375

    Google Scholar 

  21. Spiccia L, Fallon GD, Grannas MJ, Nichols PJ, Tiekink ERT (1998) Inorg Chim Acta 279:192

    Google Scholar 

  22. Toftlund H (1996) in: Kahn O (ed) Magnetism: A Supramolecular Function. NATO ASI Series C, Vol 484, Kluwer Academic, The Netherlands, p 323

    Google Scholar 

  23. Hojland F, Toftlund H, Yde-Andersen S (1983) Acta Chem Scand A 37:251

    Google Scholar 

  24. Schenker S, Stein PC, Wolny JA, Brady C, McGarvey JJ, Toftlund H, Hauser A (2001) Inorg Chem 40:134

    Google Scholar 

  25. Ksenofontov V, Gaspar AB, Real JA, Gütlich P (2001) J Phys Chem B 105:12266

    Google Scholar 

  26. Buckley A, Herbert I, Rumbold B, Wilson G, Murray KS (1970) J Phys Chem Solids 31:1423

    Google Scholar 

  27. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024

    Google Scholar 

  28. Telfer SG, Bocquet B, Williams AF (2001) Inorg Chem 40:4818

    Google Scholar 

  29. Edder C, Piguet C, Bernardinelli G, Mareda J, Bochet GC, Bunzli J-CG, Hopfgartner G (2000) Inorg Chem 39:5059

    Google Scholar 

  30. Real JA, Castro I, Bousseksou A, Verdaguer M, Burriel R, Castro M, Linares J, Varret F (1997) Inorg Chem 36:455

    Google Scholar 

  31. Kahn O, Codjovi E, Garcia Y, van Koningsbruggen PJ, Lapouyadi R, Sommier L (1996) In: Turnbull MM, Sugimoto T, Thompson LK (eds) Molecule Based Magnetic Materials. ACS Symposium Series 644, p 298

    Google Scholar 

  32. Kahn O, Martinez CJ (1998) Science 279:44

    Google Scholar 

  33. Garcia Y, van Koningsbruggen PJ, Bravic G, Guionneau P, Chasseau D, Cascarano GL, Moscovici J, Lambert K, Michalowicz A, Kahn O (1997) Inorg Chem 36:6357

    Google Scholar 

  34. Vreugdenhil W, van Diemen JH, de Graaff RAG, Haasnoot JG, Reedijk J, van der Kraan AM, Kahn O, Zarembowitch J (1990) Polyhedron 9:2971

    Google Scholar 

  35. Garcia Y, Kahn O, Rabardel L, Chansou B, Salmon L, Tuchagues JP (1999) Inorg Chem 38:4663

    Google Scholar 

  36. van Koningsbruggen PJ, Garcia Y, Kahn O, Fournes L, Kooijman H, Spek AL, Haasnoot JG, Moscovici J, Provost K, Michalowicz A, Renz F, Gütlich P (2000) Inorg Chem 39:1891

    Google Scholar 

  37. van Koningsbruggen PJ, Garcia Y, Kooijman H, Spek AL, Haasnoot JG, Kahn O, Linares J, Codjovi E, Varret F (2001) J Chem Soc Dalton Trans 466

    Google Scholar 

  38. Moliner N, Muñoz C, Létard S, Solans X, Menéndez N, Goujon A, Varret F, Real JA (2000) Inorg Chem 39:5390

    Google Scholar 

  39. Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Science 298:1762

    Google Scholar 

  40. Kitazawa T, Gomi Y, Takahashi M, Takeda M, Enomoto M, Miyazaki A, Enoki T (1996) J Mater Chem 6:119

    Google Scholar 

  41. Niel V, Martinez-Agudo JM, Muñoz MC, Gaspar AB, Real JA (2001) Inorg Chem 40:3838

    Google Scholar 

  42. Gütlich P (1981) Struct Bond 44:83

    Google Scholar 

  43. Toftlund H (1989) Coord Chem Rev 94:67

    Google Scholar 

  44. von Zelewsky A (1996) Stereochemistry of Coordination Compounds. Wiley, NY, Ch 6

    Google Scholar 

  45. Keene FR (1998) Chem Soc Rev 27:185

    Google Scholar 

  46. D’Alessandro DM, Kelso LS, Keene FR (2001) Inorg Chem 40:6841

    Google Scholar 

  47. a. Ortega-Villar N, Moreno-Esparza R, Niel V, Gaspar A, Muñoz MC, Real JA (2002) Abstracts of VIII International Conference on Molecule-based Magnets C-33, Valencia, Spain; b. private communication to KSM, October 2002

    Google Scholar 

  48. Duelund L, Hazell R, McKenzie CJ, Nielsen LP, Toftlund H (2001) J Chem Soc Dalton Trans 152

    Google Scholar 

  49. Grandjean F, Long GJ, Hutchinson BB, Ohlhausen L, Neill P, Holcomb JD (1989) Inorg Chem 28:4406

    Google Scholar 

  50. Anderson PA, Astley T, Hitchman MA, Keene FR, Moubaraki B, Murray KS, Skelton BW, Tiekink ERT, Toftlund H, White AH (2000) J Chem Soc Dalton Trans 3505

    Google Scholar 

  51. Chaudhuri P, Wieghardt K (1987) Prog Inorg Chem 35:329

    Google Scholar 

  52. Brooker S (private communication)

    Google Scholar 

  53. Toftlund H (private communication)

    Google Scholar 

  54. Leita BA, Moubaraki B, Murray KS, Smith JP (unpublished results)

    Google Scholar 

  55. Moliner N, Gaspar AB, Muñoz MC, Niel V, Cano J, Real JA (2001) Inorg Chem 40:3986

    Google Scholar 

  56. Smith JP, Moubaraki B, Murray KS (manuscript in preparation)

    Google Scholar 

  57. Brooker S, de Geest DJ, Kelly RJ, Plieger PG, Moubaraki B, Murray KS, Jameson GB (2002) J Chem Soc Dalton Trans 2080

    Google Scholar 

  58. Thuery P, Zarembowitch J (1986) Inorg Chem 25:2001

    Google Scholar 

  59. Sugiyarto KH, Goodwin HA (1988) Aust J Chem 41:1645

    Google Scholar 

  60. Sugiyarto KH, Weitzner K, Craig DC, Goodwin HA (1997) Aust J Chem 50:869

    Google Scholar 

  61. Dosser RJ, Eilbeck WJ, Underhill AE, Edwards PR, Johnson CE (1969) J Chem Soc A 810

    Google Scholar 

  62. Leita BA, Moubaraki B, Murray KS, Smith JP (manuscript in preparation)

    Google Scholar 

  63. Sieber R, Decurtins S, Stoeckli-Evans H, Wilson C, Yufit D, Howard JAK, Capelli SC, Hauser A (2000) Chem Eur J 6:361

    Google Scholar 

  64. Zerara M, Hauser A (2002) Abstracts of VIIIth International Conference on Molecule-based Magnets C31, Valencia, Spain

    Google Scholar 

  65. Coronado E, Galan-Mascaros JR, Gomez G, Carlos J (1999) Mol Cryst Liq Cryst 334:679

    Google Scholar 

  66. Batten SR, Jensen P, Moubaraki B, Murray KS (2000) Chem Commun 2331

    Google Scholar 

  67. Batten SR, Moubaraki B, Murray KS (unpublished results)

    Google Scholar 

  68. Burnett MG, McKee V, Nelson SM (1981) J Chem Soc Dalton Trans 1492

    Google Scholar 

  69. Batten SR, Robson R (1998) Angew Chem Int Ed 37:1460

    Google Scholar 

  70. Hoskins BF, Robson R (1990) J Am Chem Soc 112:1546

    Google Scholar 

  71. Yaghi OM, Li HL, Davis C, Richardson D, Groy TL (1998) Accounts Chem Res 31:474

    Google Scholar 

  72. Day P (2000) J Chem Soc Dalton Trans 3483

    Google Scholar 

  73. Kahn O (2000) Accounts Chem Res 33:647

    Google Scholar 

  74. Miller JS (2000) Inorg Chem 39:4392

    Google Scholar 

  75. Gatteschi D (1994) Adv Mater 6:635

    Google Scholar 

  76. Atwood JL, Davies JED, MacNicol DD, Vögtle F (eds)(1996) Comprehensive Supramolecular Chemistry, Vol 6. Pergamon, NY

    Google Scholar 

  77. Biradha K, Hongo Y, Fujita M (2000) Angew Chem Int Ed 39:3843

    Google Scholar 

  78. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276

    Google Scholar 

  79. Abrahams BF, Jackson PA, Robson R (1998) Angew Chem Int Ed 37:2656

    Google Scholar 

  80. Yaghi OM, Li GM, Li HL (1995) Nature 378:703

    Google Scholar 

  81. Kepert CJ, Prior TJ, Rosseinsky MJ (2000) J Am Chem Soc 122:5158

    Google Scholar 

  82. Fletcher AJ, Cussen EJ, Prior TJ, Rosseinsky MJ, Kepert CJ, Thomas KM (2001) J Am Chem Soc 123:10001

    Google Scholar 

  83. Eddaoudi M, Li HL, Yaghi OM (2000) J Am Chem Soc 122:1391

    Google Scholar 

  84. Fujita M, Kwon YJ, Washizu S, Ogura K (1994) J Am Chem Soc 116:1151

    Google Scholar 

  85. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature 404:982

    Google Scholar 

  86. Kahn O, Larionova J, Yakhmi JV (1999) Chem Eur J 5:3443

    Google Scholar 

  87. Chavan SA, Larionova J, Kahn O, Yakhmi JV (1998) Philos Mag B 77:1657

    Google Scholar 

  88. Larionova J, Chavan SA, Yakhmi JV, Froystein AG, Sletten J, Sourisseau C, Kahn O (1997) Inorg Chem 36:6374

    Google Scholar 

  89. Rujiwatra A, Kepert CJ, Claridge JB, Rosseinsky MJ, Kumagai H, Kurmoo M (2001) J Am Chem Soc 123:10584

    Google Scholar 

  90. Rujiwatra A, Kepert CJ, Rosseinsky MJ (1999) Chem Commun 2307

    Google Scholar 

  91. Kurmoo M, Kumagai H, Hughes SM, Kepert CJ (2003) Inorg Chem 42:6709

    Google Scholar 

  92. Kepert CJ, Kurmoo M, Day P (1998) Proc Roy Soc London A 454:487

    Google Scholar 

  93. Ciurtin DM, Pschirer NG, Smith MD, Bunz UHF, zur Loye H-C (2001) Chem Mater 13:2743

    Google Scholar 

  94. Dong Y-B, Jin G-X, Smith MD, Huang R-Q, Tang B, zur Loye H-C (2002) Inorg Chem 41:4909

    Google Scholar 

  95. van Koningsbruggen PJ, Garcia Y, Codjovi E, Lapouyade R, Kahn O, Fournes L, Rabardel L (1997) J Mater Chem 7:2069

    Google Scholar 

  96. Schweifer J, Weinberger P, Mereiter K, Boca M, Reichl C, Wiesinger G, Hilscher G, van Koningsbruggen PJ, Kooijman H, Grunert M, Linert W (2002) Inorg Chim Acta 339:297

    Google Scholar 

  97. Roubeau O, Haasnoot JG, Codjovi E, Varret F, Reedijk J (2002) Chem Mater 14:2559

    Google Scholar 

  98. Roubeau O, Gomez JMA, Balskus E, Kolnaar JJA, Haasnoot JG, Reedijk J (2001) New J Chem 25:144

    Google Scholar 

  99. Garcia Y, Ksenofontov V, Levchenko G, Gütlich P (2000) J Mater Chem 10:2274

    Google Scholar 

  100. Kolnaar JJA, de Heer MI, Kooijman H, Spek AL, Schmitt G, Ksenofontov V, Gütlich P, Haasnoot JG, Reedijk J (1999) Eur J Inorg Chem 881

    Google Scholar 

  101. Ozarowski A, Yu SZ, McGarvey BR, Mislankar A, Drake JE (1991) Inorg Chem 30:3167

    Google Scholar 

  102. Vreugdenhil W, Gorter S, Haasnoot JG, Reedijk J (1985) Polyhedron 4:1769

    Google Scholar 

  103. Kitazawa T, Takahashi M, Enomoto M, Miyazaki A, Enoki T, Takeda M (1999) J Radioanal Nucl Ch 239:285

    Google Scholar 

  104. Iwamoto T (1996) J Inclus Phen Mol 24:61

    Google Scholar 

  105. Choudhury A, Natarajan S, Rao CNR (1999) Chem Commun 1305

    Google Scholar 

  106. Kitaura R, Fujimoto K, Noro S, Kondo M, Kitagawa S (2002) Angew Chem Int Ed 41:133

    Google Scholar 

  107. Biradha K, Fujita M (2002) Angew Chem Int Ed 41:3392

    Google Scholar 

  108. Cussen EJ, Claridge JB, Rosseinsky MJ, Kepert CJ (2002) J Am Chem Soc 124:9574

    Google Scholar 

  109. Jacob V, Mann S, Huttner G, Walter O, Zsolnai L, Kaifer E, Rutsch P, Kircher P, Bill E (2001) Eur J Inorg Chem 2625

    Google Scholar 

  110. Kolnaar JJA, van Dijk G, Kooijman G, Spek AL, Ksenofontov VG, Gütlich P, Haasnoot JG, Reedijk J (1997) Inorg Chem 36:2433

    Google Scholar 

  111. Ernst SD, Kaim W (1989) Inorg Chem 28:1520

    Google Scholar 

  112. Endo K, Koike T, Sawaki T, Hayashida O, Masuda H, Aoyama Y (1997) J Am Chem Soc 119:4117

    Google Scholar 

  113. Kepert CJ, Hesek D, Beer PD, Rosseinsky MJ (1998) Angew Chem Int Ed 37:3158

    Google Scholar 

  114. Leita BA, Moubaraki B, Murray KS, Smith PJ, Cashion JD (2004) Chem Commun, 156

    Google Scholar 

  115. Gaspar AB, Ksenofontov V, Real JA, Gütlich P (2003) Chem Phys Lett 373:385

    Google Scholar 

  116. Real JA, Gaspar AB, Niel V, Muñoz MC (2003) Coord Chem Rev 236:121

    Google Scholar 

Download references

Acknowledgment

The authors wish to express their sincere thanks to their students and research fellows, B. A. Leita, Dr. J. P. Smith, Dr B. Moubaraki, Dr S. R. Batten, Dr P. Jensen (Monash University), G. J. Halder, S. M. Hughes, and P. V. Ganesan (University of Sydney) who have worked tirelessly in SCO and molecular network chemistry and allowed us to include unpublished results. They also wish to thank Professor H. Toftlund (University of Southern Denmark, Odense) and Associate Professor S. Brooker (University of Otago, Dunedin) for valuable discussions, and Professor J. A. Real (University of Valencia) for allowing us to quote unpublished results. K. S. M. wishes to thank Mrs. L. Verdan for typing the manuscript and Drs. J. P. Smith and B. Moubaraki for preparing graphics.

We are grateful for the financial help from the Australian Research Council in providing ARC Large, Discovery and International Linkage grants to allow us to study SCO materials and to provide fellowships and international interchanges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith S. Murray .

Editor information

P. Gütlich H.A. Goodwin

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Murray, K.S., Kepert, C.J. Cooperativity in Spin Crossover Systems: Memory, Magnetism and Microporosity. In: Gütlich, P., Goodwin, H. (eds) Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b13536

Download citation

  • DOI: https://doi.org/10.1007/b13536

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40394-4

  • Online ISBN: 978-3-540-44981-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics