Skip to main content

Bipyrimidine-Bridged Dinuclear Iron(II) Spin Crossover Compounds

  • Chapter
Spin Crossover in Transition Metal Compounds I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 233))

Abstract

This review reports on the study of the interplay between magnetic coupling and spin transition in 2,2′-bipyrimidine (bpym)-bridged iron(II) dinuclear compounds. The coexistence of both phenomena has been observed in {[Fe(bpym)(NCS)2]2(bpym)}, {[Fe(bpym)(NCSe)2]2(bpym)} and {[Fe(bt)(NCS)2]2(bpym)} (bpym=2,2′-bipyrimidine, bt=2,2′-bithiazoline) by the action of external physical perturbations such as heat, pressure or electromagnetic radiation. The competition between magnetic exchange and spin crossover has been studied in {[Fe(bpym)(NCS)2]2(bpym)} at 0.63 GPa. LIESST experiments carried out on {[Fe(bpym)(NCSe)2]2(bpym)}and {[Fe(bt)(NCS)2]2(bpym)}at 4.2 K have shown that it is possible to generate dinuclear molecules with different spin states in this class of compounds. A special feature of the spin crossover process in the dinuclear compounds studied so far is the plateau in the spin transition curve. Up to now, it has not been possible to explore with a microscopic physical method the nature of the species which constitute such a plateau, due to the relatively high temperatures at which the transition takes place. A two-step spin transition has been observed for {[Fe(phdia)2(NCS)2]2(phdia)} (phdia: 4,7-phenanthroline-5,6-diamine) with T 1/2(1) and T 1/2(2) located at 108 and 80 K, respectively. Due to this low temperature transition we were able to thermally trap, at liquid helium temperatures, the species present in the plateau of the spin transition curve. The results have revealed that the plateau consists mainly of [HS−LS] pairs, and they confirmed the hypothesis formulated earlier that the spin conversion in dinuclear entities proceeds via [HS−HS]↔[HS−LS]↔[LS−LS] pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

ST:

Spin transition

SCO:

Spin crossover

HS:

High spin

LS:

Low spin

χ M :

Molar magnetic susceptibility

T :

Temperature

T 1/2 :

Temperature at which 50 per cent of the “SCO-active” molecules have changed the spin state

T p :

Temperature at which the plateau of a two-step spin transition is centred

P :

Pressure

P 1/2 :

Pressure at which 50 per cent of the “SCO-active” molecules have changed the spin state

γ HS :

HS molar fraction

γHS(T):

HS molar fraction as a function of temperature

M :

Magnetisation

H :

Magnetic field

J :

Magnetic coupling parameter

D :

Zero field splitting parameter

g :

Landé factor

H ext :

External magnetic field

H eff :

Effective magnetic field

S :

Spin quantum number

#lt;S#gt;:

Average spin value

δ HS :

Isomeric shift value for the HS state

δ LS :

Isomeric shift value for the LS state

ΔE Q(HS) :

Quadrupole splitting for the HS state

ΔE Q(LS) :

Quadrupole splitting for the LS state

λ :

Light wavelength

ΔH :

Enthalpy difference between the HS and LS states

W :

Energetic stabilization of the [HS−LS] pair relative to the enthalpy average of the [HS−HS] and [LS−LS] states (ΔH/2)

Γ :

Parameter that accounts for the intermolecular interactions

bpym:

2,2′-bipyrimidine

bt:

2,2′-bithiazoline

phen:

1,10-phenanthroline

bipy:

2,2′-bipyridine

phdia:

4,7-phenanthroline-5,6-diamine

pic:

2-picolylamine

ptz:

1-propyltetrazole

py:

pyridine

References

  1. De Munno G, Julve M, Real JA (1997) Inorg Chim Acta 255:185

    Google Scholar 

  2. Claude R, Real JA, Zarembowitch J, Kahn O, Ouahab L, Grandjean D, Boukheddaden K, Varret F, Dworkin A (1990) Inorg Chem 29:4442

    Google Scholar 

  3. Andrés E, De Munno G, Julve M, Real JA, Lloret F (1993) J Chem Soc Dalton Trans 2169

    Google Scholar 

  4. Real JA, Zarembowitch J, Kahn O, Solans X (1987) Inorg Chem 26:2939

    Google Scholar 

  5. Gaspar AB, Muñoz MC, Real JA (unpublished results)

    Google Scholar 

  6. Kono M, Kido MM (1991) Bull Chem Soc Jpn 64:339

    Google Scholar 

  7. Real JA, Bolvin H, Bousseksou A, Dworkin A, Kahn O, Varret F, Zarembowitch J (1992) J Am Chem Soc 114:4650

    Google Scholar 

  8. Real JA, Castro I, Bousseksou A, Verdaguer M, Burriel R, Castro M, Linares J, Varret F (1997) Inorg Chem 36:455

    Google Scholar 

  9. Ksenofontov V, Gaspar AB, Real JA, Gütlich P (2001) J Chem Phys B 105:12266

    Google Scholar 

  10. a. Ksenofontov V, Spiering H, Schreiner A, Levchenko G, Goodwin H, Gütlich P (1999) J Phys Chem Solids 60:393; b. Gaspar AB, Moliner N, Muñoz MC, Ksenofntov V, Levchenko G, Gütlich P, Real JA (2003) Chem Month (Monatsh Chem) 134:285; c. Niel V, Muñoz MC, Gaspar AB, Galet A, Levchenko G, Real JA (2002) Chem Eur J 11:2446

    Google Scholar 

  11. Ksenofontov V, Spiering H, Reiman S, Garcia Y, Gaspar A B, Moliner N, Real JA, Gütlich P (2001) Chem Phys Lett 348:381

    Google Scholar 

  12. Zimmermann R, Ritter G, Spiering H (1974) Chem Phys 4:133

    Google Scholar 

  13. Zimmermann R, Ritter G, Spiering H, Nagy DL (1974) J Phys 35:C6

    Google Scholar 

  14. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Chem Phys Lett 105:1

    Google Scholar 

  15. Hauser A (1986) Chem Phys Lett 124:543

    Google Scholar 

  16. a. Ksenofontov V, Spiering H, Reiman S, Garcia Y, Gaspar AB, Moliner N, Real JA, Gütlich P (2002) Hyper Interact 141–142:47; b. Gaspar AB, Ksenofontov V, Spiering H, Reiman S, Real JA, Gütlich P (2003) Hyper Interact (in press); c. Létard JF, Real JA, Moliner N, Gaspar AB, Capes L, Cador O, Kahn O (1999) J Am Chem Soc 121:10630; d. Chastanet G, Gaspar AB, Real JA, Lètard J F (2001) Chem Commun 819

    Google Scholar 

  17. Gaspar AB, Ksenofontov V, Real JA, Gütlich P (unpublished results)

    Google Scholar 

  18. Ksenofontov V, Gaspar AB, Niel V, Reiman S, Bousseksou A, Real JA, Gütlich P Chem Eur J, in press

    Google Scholar 

  19. Köppen H, Müller EW, Köhler CP, Spiering H, Meissner, Gütlich P (1982) Chem Phys Lett 91:348

    Google Scholar 

  20. Spiering H, Kohlhaas T, Romstedt H, Hauser A, Bruns-Yilmaz, Kusz J, Gütlich (1999) Coord Chem Rev 192:629

    Google Scholar 

Download references

Acknowledgement

We thank the Ministerio Español de Ciencia y Tecnología (project BQU 2001-2928) for financial assistance. We also thank the European Commission for granting the TMR-Network “Thermal and Optical Switching of Molecular Spin States (TOSS)”, Contract No. ERB-FMRX-CT98-0199EEC/TMR. The financial help from the DFG, the Fonds der Chemischen Industrie and the Materialwissenschaftliches Forschungszentrum of the University of Mainz is also gratefully acknowledged. A. B. G. is grateful for a fellowship from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Antonio Real or Philipp Gütlich .

Editor information

P. Gütlich H.A. Goodwin

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Real, J.A., Gaspar, A.B., Muñoz, M.C., Gütlich, P., Ksenofontov, V., Spiering, H. Bipyrimidine-Bridged Dinuclear Iron(II) Spin Crossover Compounds. In: Gütlich, P., Goodwin, H. (eds) Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b13534

Download citation

  • DOI: https://doi.org/10.1007/b13534

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40394-4

  • Online ISBN: 978-3-540-44981-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics