Skip to main content

Laser Cleaning Methodologies of Polymer Substrates

  • Chapter
Polymers and Light

Part of the book series: Advances in Polymer Science ((POLYMER,volume 168))

Abstract

Ever increasing technological and environmental needs pose significant demands on the removal of unwanted material from substrates . Laser irradiation has been shown to afford a highly effective method for addressing these problems. The three schemes examined include coating removal in a layer-by-layer approach, selective removal of surface impurities , and particle removal. The basic principles underlying these processes are presented. Particular emphasis is placed on the side effects of these procedures, since these will determine to a large extent the success and the wider acceptance of laser cleaning schemes. Elucidation of these effects is also of scientific interest, since they are intimately related with the nature of the processes underlying the interaction of intense laser pulses with molecular/polymeric materials. To this end, these effects are systematically addressed in experiments involving model and realistic systems and are exemplified in the particular case of laser-based restoration of painted artworks. It is shown that, with proper optimization of the irradiation parameters, the side effects of laser processing can be minimized and be inconsequential for substrate integrity. Thus, at least for certain cases, laser cleaning schemes may be a highly effective, accurate, and safe method providing specific advantages not only over conventional methods, but also over other emerging competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

α:

Absorption coefficient

aac :

Acoustic wave damping coefficient

β:

Thermal expansion coefficient at constant temperature

cp :

Heat capacity at constant pressure

cv :

Heat capacity at constant volume

c s :

Sound speed

Γ:

Grüneisen coefficient

γ:

Adiabatic ratio

δ:

Ablation (etched) depth per pulse

Ebinding :

Binding energy to the substrate

D:

Thermal diffusivity

E a :

Activation energy

E cr :

Critical energy density for ablation

E KIN :

Kinetic energy

FLASER :

Laser fluence

Fthr :

Threshold fluence for material removal

ΔH vap :

Evaporation enthalpy

ΔH sub :

Sublimation enthalpy

ηc :

Particle laser-induced removal efficiency

θ:

Ratio τpulseac

I:

Laser intensity

k(T):

Reaction rate constant

κB :

Boltzmann constant

κT :

Isothermal compressibility

λ:

Wavelength

M:

Mass

N fringe :

Number of interference fringes

Npulse :

Number of laser pulses

n R :

Refractive index

n:

Density of particles on surface after irradiation

n0 :

Density of particles on surface before irradiation

νac :

Acoustic wave frequency

P:

Pressure

PMMA:

Poly(methyl methacrylate)

PS:

Polystyrene

R:

Reflectivity

RB :

Gas constant

ρ:

Density

rp :

Particle radius

σp :

Particle absorption coefficient

σtens :

Surface tension coefficient

T:

Temperature

tth :

Thermal diffusion time

τpulse :

Laser pulse duration

τac :

Time for an acoustic wave to traverse the irradiated volume

υ:

Expansion velocity

U :

Wave amplitude in the hologram plane

φ:

Phase of the optical wave

References

  1. Srinivasan R, Braren B (1989) Chem Rev 89:1303

    Google Scholar 

  2. Srinivasan R (1994) In: Miller JS (ed) Laser ablation principles and applications. Springer Ser Mater. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Bäuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Lippert T, Dickinson TJ (2003) Chem Rev 103:453

    Google Scholar 

  5. Azema AG (1994) In: Laude LD (ed) Excimer lasers. Kluwer, Dordrecht

    Google Scholar 

  6. Vogel A, Venugopalan V (2003) Chem Rev 103:577

    Google Scholar 

  7. Luk’yanchuk BS (2002) Laser cleaning. World Scientific, Singapore

    Google Scholar 

  8. DeJule R (1998) Semicond Intern 8:65

    Google Scholar 

  9. Kern W (1993) Handbook of semiconductor wafer cleaning. Noyes, New York

    Google Scholar 

  10. Reed R (1970) Ancient skins, parchments, and leathers. Seminar, London New York

    Google Scholar 

  11. Wolbers R, Sterman RN, Stavroudis C (1990) Notes for workshop on new methods in the cleaning of paintings. The Getty Conservation Institute, Marina del Rey

    Google Scholar 

  12. Asmus JF (1986) IEEE Circuit Devic 2:6

    Google Scholar 

  13. Watkins KG, Larson JH, Emmony DC, Steen WM (1995) Proceedings of the NATO Advanced Study Institute on laser processing: surface treatment and film deposition. Kluwer, Dordrecht, p 907

    Google Scholar 

  14. Zapka W, Ziemlich W, Tam AC (1991) Appl Phys Lett 58:2217

    Google Scholar 

  15. Imen K, Lee SJ, Allen SD (1991) Appl Phys Lett, 58:203

    Google Scholar 

  16. Fotakis C, Anglos D, Balas C, Georgiou S, Vainos NA, Zergioti I, Zafiropulos V (1997) In: Tam AC (ed) OSA TOPS on lasers and optics for manufacturing, vol 9. Optical Society of America, Washington DC, pp 99–104

    Google Scholar 

  17. Zafiropulos V, Fotakis C (1997) In: Cooper M (ed) Laser cleaning in conservation: an introduction, chapter 6. Butterworth Heinemann, Oxford

    Google Scholar 

  18. Georgiou S, Zafiropulos V, Anglos D, Balas C, Tornari V, Fotakis C (1997) Appl Surf Sci 127–129:738

    Google Scholar 

  19. Brannon JH, Tam AC, Kurth RH (1991) J Appl Phys 70:3881

    Google Scholar 

  20. Manz C, Zafiropulos V (1997) Opto & Laser Europe (OLE) 45:27

    Google Scholar 

  21. Daurelio G, Chita G, Cinquepalmi (1999) Appl Phys A 69:S543

    Google Scholar 

  22. Mills JS (1956) J Chem Soc 2196

    Google Scholar 

  23. de la Rie ER (1988) Stud Conserv 33:53

    Google Scholar 

  24. de la Rie ER (1989) Anal Chem 61:1228A

    Google Scholar 

  25. Kakasaki T, Tsunemi A, Nagasaka K, Suda A, Tashiro H (1996) Appl Phys A 63:435

    Google Scholar 

  26. Bityurin N, Luk’yanchuk BS, Hong MH, Chong CT (2003) Chem Rev 103:519

    Google Scholar 

  27. Kuper S, Brannon J, Brannon K (1993) Appl Phys A 56:43

    Google Scholar 

  28. Schroeder K, Schuoecker D (1998) Laser Phys 8:38

    Google Scholar 

  29. Schmidt M, Li L, Spencer J, Key PH (1998) Appl Surf Sci 138/139:378

    Google Scholar 

  30. Galantucci LM, Gravina A, Chita G, Chinquepalmi M (1997) Polym Polym Compos 5:87

    Google Scholar 

  31. Liu K, Garmire E (1995) Appl Opt 34:4409

    Google Scholar 

  32. Schmidt MJJ, Li L, Spencer JT (2000) Appl Surf Sci 53:154

    Google Scholar 

  33. Bityurin N, Arnold N, Luk’yanchuk N, Bauerle D (1998) Appl Surf Sci 164:127

    Google Scholar 

  34. Zhigilei LV, Garrison BJ (2000) J Appl Phys 88:1281

    Google Scholar 

  35. Georgiou S, Koubenakis A, Lassithiotaki M, Labrakis J (1998) J Chem Phys 109:8591

    Google Scholar 

  36. Kautek W, Pentzien S, Rudolph P, Krüger J, König E (1991) Appl Surf Sci 127–129:746

    Google Scholar 

  37. Kolar J, Strlič M, Müller-Hess D, Gruber A, Troschke K, Pentzien S, Kautek W (2000) J Cult Heritage 1:S221

    Google Scholar 

  38. Kolar J, Strlič M, Marinček M (2002) Appl Phys A 75:673

    Google Scholar 

  39. Lu YF, Lee YP, Zhou MS (1998) J Appl Phys 83:1677

    Google Scholar 

  40. Koren G, Donelon JJ (1998) Appl Phys B 45:45

    Google Scholar 

  41. Coupland K, Herman PR, Gu B (1998) Appl Surf Sci 127–129:731

    Google Scholar 

  42. Mosbacher M, Dobler V, Boneberg J, Leiderer P (2000) Appl Phys A 70:669

    Google Scholar 

  43. Fourrier T, Schrems G, Mühlberger T, Heitz J, Arnold N, Bäuerle D, Mosbacher M, Boneberg M, Leiderer P (2001) Appl Phys A 72:1

    Google Scholar 

  44. Halfpenny DR, Kane DM (1999) J Appl Phys 86:6641

    Google Scholar 

  45. Mosbacher M, Mónzer H-J, Zimmermann J, Solis J, Boneberg J, Leiderer P (2001) Appl Phys A 72:41

    Google Scholar 

  46. Chaoui N, Solis J, Afonso CN, Fourrier T, Muehlberger T, Schrems G, Mosbacher M, Bäuerle D, Bertsch M, Leiderer P (2003) Appl Phys A 72:41

    Google Scholar 

  47. Dobler V, Oltra R, Boquillon JP, Mosbacher M, Boneberg J, Leiderer P (1999) Appl Phys A 69:335

    Google Scholar 

  48. Dongsik K, Park HK, Grigoropoulos CP (2001) Int J Heat Mass Trans 44:3843

    Google Scholar 

  49. Yavas OJ, Leiderer P, Park HK, Grigoropoulos CP, Poon CC, Tam AC (1994) Phys Rev Lett 72:2021

    Google Scholar 

  50. Lee YP, Lu YF, Chan DSH, Low TS, Zhou MS (1998) Jpn J Appl Phys 37:2524

    Google Scholar 

  51. Tam AC, Park HK, Grigoropoulos CP (1998) Appl Surf Sci 127–129:721

    Google Scholar 

  52. Balas C (1997) IEEE Trans Biomed Eng 44:1

    Google Scholar 

  53. Anglos D (2001) Appl Spectrosc 55:186

    Google Scholar 

  54. Anglos D, Solomidou M, Zergioti I, Zafiropulos V, Papazoglou TG, Fotakis C (1996) Appl Spectrosc 50:1331

    Google Scholar 

  55. Clark RJH (1999) J Mol Struct 480/481:15

    Google Scholar 

  56. Castillejo M, Martin M, Silva D, Stratoudaki T, Anglos D, Burgio L, Clark RJH (2000) J Mol Struct 550/551:191

    Google Scholar 

  57. Lee JM, Watkins KG (2000) Opt Laser Eng 34:429

    Google Scholar 

  58. Vainos NA, Mailis S, Pissadakis S, Boutsikaris L, Dainty P, Parmiter PJM, Hall TJ (1996) Appl Optics 35:6304

    Google Scholar 

  59. Lazare S, Granier V (1990) Chem Phys Lett 168:593

    Google Scholar 

  60. Pettit GH, Ediger MN, Hahn DW, Brinson BE, Sauerbrey R (1994) Appl Phys A 58:573

    Google Scholar 

  61. Furutani H, Fukumura H, Masuhara H (1996) J Phys Chem 100:6871

    Google Scholar 

  62. Fukumura H, Mibuka N, Eura S, Masuhara H, Nishi N (1993) J Phys Chem 97:13761

    Google Scholar 

  63. Fujiwara H, Fukumura H, Masuhara H (1995) J Phys Chem 99:11844 and references therein

    Google Scholar 

  64. Lippert TK, Bennett LS, Nakamura T, Niino H, Yabe A (1996) Appl Surf Sci 96–98:601

    Google Scholar 

  65. Logan D, Wight CA, Apkarian VA (1997) Chem Phys 217:99

    Google Scholar 

  66. Ehring JH, Sundqvist BUR (1995) J Mass Spectr 30:1303

    Google Scholar 

  67. Venugopalan V, Nishioka NS, Mikic BB (1995) Biophys J 69:1259

    Google Scholar 

  68. Lippert T, Gerber T, Wokaun A, Funk DJ, Fukumura H, Goto M (1999) Appl Phys Lett 75:1018

    Google Scholar 

  69. Wei J, Hoogen N, Lippert T, Nuyken O, Wokaun A (2001) J Phys Chem 105:1267

    Google Scholar 

  70. Lippert T, Nakamura T, Niino H, Yabe A (1997) Appl Surf Sci 109–110:227

    Google Scholar 

  71. Yingling YG, Zhigilei LV, Garrison BJ (2001) Photochem Photobiol A 145:173

    Google Scholar 

  72. Lippert T, Yabe A, Wokaun A (1997) Adv Mater 9:105

    Google Scholar 

  73. Larciprete R, Stuke M (1987) Appl Phys B 42:181

    Google Scholar 

  74. Fujiwara H, Nakajima Y, Fukumura H, Masuhara H (1995) J Phys Chem 99:11481

    Google Scholar 

  75. Lippert T, Stoutland PO (1997) Appl Surf Sci 109/110:43

    Google Scholar 

  76. Arnold BR, Scaiano JC (1992) Macromolecules 25:1582

    Google Scholar 

  77. Webb RL, Langford SC, Dickinson JT, Lippert TK (1998) Appl Surf Sci 127–129:815

    Google Scholar 

  78. Lippert TK, Langford SC, Wokaun A, Georgiou S, Dickinson JT (1999) J Appl Phys 86:7116

    Google Scholar 

  79. Grivas C, Niino H, Yabe A (1999) Appl Phys A 69:S159

    Google Scholar 

  80. Haselbach E, Rohner Y, Suppan P (1990) Helv Chim Acta 73:1644

    Google Scholar 

  81. Rabek JF (1987) Mechanisms of photophysical processes and photochemical reactions in pPolymers: theory and applications. Wiley, Chichester

    Google Scholar 

  82. Haward RN, Young RJ (eds) (1997) The physics of glassy polymers, 2nd edn. Chapman & Hall, London

    Google Scholar 

  83. Lassithiotaki M, Athanassiou A, Anglos D, Georgiou S, Fotakis C (1999) Appl Phys A 69:363

    Google Scholar 

  84. Athanassiou A, Andreou E, Anglos D, Georgiou S, Fotakis C (1999) Appl Phys A 86:S285

    Google Scholar 

  85. Athanassiou A, Lassithiotaki M, Anglos D, Georgiou S, Fotakis C (2000) Appl Surf Sci 154/155:89

    Google Scholar 

  86. Andreou E, Athanassiou A, Fragouli D, Anglos D, Georgiou S (2002) Laser Chem 20:1

    Google Scholar 

  87. Athanassiou A, Andreou E, Bonarou A, Tornari V, Anglos A, Georgiou S, Fotakis C (2002) Appl Surf Sci 197–198:757

    Google Scholar 

  88. Athanassiou A, Andreou E, Fragouli D, Anglos D, Georgiou S, Fotakis C (2001) J Photochem Photobiol A 145:229

    Google Scholar 

  89. Noyes RM (1961) Prog React Kinet 1:29

    Google Scholar 

  90. Fournier I, Tabet JC, Bolbach G (2002) Int J Mass Spectrom 219:515

    Google Scholar 

  91. Krajnovich DJ (1997) J Appl Phys 82:427

    Google Scholar 

  92. Krajnovich DJ, Xazquez JE (1993) J Appl Phys 73:3001

    Google Scholar 

  93. Ichimura T, Mori Y, Shinohara H, Nishi Y (1994) Chem Phys 189:117 and references therein

    Google Scholar 

  94. Tsuboi Y, Hatanaka K, Fukumura H, Masuhara H (1994) J Phys Chem 98:11237

    Google Scholar 

  95. Koubenakis A, Elimioti T, Georgiou S (1999) Appl Phys A 69:637

    Google Scholar 

  96. Yingling YG, Zhigilei LV, Garrison BJ, Koubenakis A, Labrakis J, Georgiou S (2001) Appl Phys Lett 78:1631

    Google Scholar 

  97. Koubenakis A, Labrakis J, Georgiou S (2001) Chem Phys Lett 346:54

    Google Scholar 

  98. Preuss S, Spath M, Zhang Y and Stuke M (1993) Appl Phys Lett 62:3049

    Google Scholar 

  99. Baudach S, Krüger J, Kautek W (2001) Rev Laser Eng 29:705

    Google Scholar 

  100. Vogel A, Noack J, Hüttmann G, Paltauf G (2002) Proc SPIE 4633A:1

    Google Scholar 

  101. König K, Riemann I, Fritsche W (2001) Opt Lett 26:819

    Google Scholar 

  102. Mahan GD, Cole HS, Lin YS, Philipp HR (1988) Appl Phys Lett 53:2377

    Google Scholar 

  103. Gusev VE, Karabutov AA (1993) Laser optoacoustics. American Institute of Physics, New York

    Google Scholar 

  104. Hare DE, Franken J, Dlott DD (1995) J Appl Phys 77:5950

    Google Scholar 

  105. Lee I-YS, Wen X, Tolbert WA, Dlott DD, Doxtader D, Arnold DR (1992) J Appl Phys 72:2440

    Google Scholar 

  106. Zweig AD, Venugopalan V, Deutch TF (1993) J Appl Phys 74

    Google Scholar 

  107. Siano S, Pini R, Salimbeni R (1999) Appl Phys Lett 74:1233

    Google Scholar 

  108. Hopp B, Csete M, Révész K, Vinkó J, Bor Z (1996) Appl Surf Sci 96/98:611

    Google Scholar 

  109. Wagner F, Hoffmann P (1999) Appl Phys A 69:S841

    Google Scholar 

  110. Vest CH (1971) Holographic interferometry. Academic, New York

    Google Scholar 

  111. Bonarou A, Antonelli L, Tornari V, Georgiou S, Fotakis C (2001) Appl Phys A 73:647

    Google Scholar 

  112. Smith JW, Kramer EJ, Mills PJ (1994) J Polym Sci B: Polym Phys 32:1731

    Google Scholar 

  113. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  114. Callister WD (1997) Materials science and engineering: an introduction. Wiley, New York

    Google Scholar 

  115. Lokhandwalla M, Sturtevant B (2000) Phys Med Biol 45:1923

    Google Scholar 

  116. Blanchard D, Casalengo R, Pierre M, Trommsdorff HP (1988) J Appl Phys 65:3351

    Google Scholar 

  117. Watanabe S, Flotte TJ, McAuliffe DJ (1988) J Invest Dermatol 90:761

    Google Scholar 

  118. Doukas AG, McAuliffe DJ, Flotte TJ (1993) Ultrasound Med Biol 19:137

    Google Scholar 

Download references

Acknowledgements

The author would like to thank G. Bounos for his critical help in preparing this manuscript. The work was supported in part by the Ultraviolet Laser Facility operating at F.O.R.T.H. under the Improving Human Potential (IHP)-Access to Research Infrastructures program (contract No. HPRI-CT-1999-00074), the Training and Mobility of Researchers (TMR) program of the EU (project No. ERBFMRX-CT98-0188), and the PENED program (project No. 99E D 6) of the General Secretariat of Research and Technology—Ministry of Development (Greece).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savas Georgiou .

Editor information

Thomas. K. Lippert

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Georgiou, S. Laser Cleaning Methodologies of Polymer Substrates. In: Lippert, T. (eds) Polymers and Light. Advances in Polymer Science, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b12681

Download citation

  • DOI: https://doi.org/10.1007/b12681

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40471-2

  • Online ISBN: 978-3-540-45041-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics