Skip to main content

Conformation and Phase Diagrams of Flexible Polyelectrolytes

  • Chapter
Polyelectrolytes with Defined Molecular Architecture II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 166))

Abstract

The present article addresses the dilute solution behavior of two different polyelectrolyte systems: Aqueous solutions of quaternized poly(2-vinylpyridines) and of polyacrylic acids. Firstly, it is demonstrated that the dimensions of the chains for all investigated polyelectrolytes are described by a model that explicitly considers (i) an excluded volume comprising contributions of the electrostatic interactions via the effective charge density, and (ii) the intrinsic excluded volume in terms of the Flory interaction parameter. The effect of the chain hydrophobicity and the type of counterions on the coil dimension of the chains and the effective charge density is discussed. The latter is compared with results obtained from osmotic pressure measurements and conductometry.

The second part of the review is devoted to an investigation of the phase behavior of the two systems. For quaternized poly-2-vinylpyridines phase transitions are induced by addition of inert salt, typically NaI and are denoted as “salting out” and “salting in” . The phase behavior is assumed not to be influenced by ion specific interactions other than the Flory excluded volume parameter. Contrary, in case of polyacrylic acid highly specific interactions, such as complexation, between the polyion and bivalent earth alkaline cations may cause a precipitation of the polyelectrolyte. The precipitation point depends on both, the concentration of the polyions and the counter ions. Investigation of the coil dimensions by means of combined static and dynamic light scattering reveals a coil collapse towards spherical particles. Possible transition states along this shrinking process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DMF:

dimethylformamide

GPC:

gel permeation chromatography

LS:

light scattering

NaPA:

sodium salt of polyacrylic acid

NaPMA:

sodium salt of polymethacrylic acid

NaPSS:

sodium salt of polystyrene sulfonic acid

PEO:

polyethyleneoxide

PNIPAM:

poly(n-isopropylacrylamide)

PVP:

poly(2-vinylpyridine)

THF:

tetrahydrofuran

SAXS:

small angle x-ray scattering

References

  1. Yamakawa H (1971) Modern Theory of Polymer Solutions. Harper and Row, New York

    Google Scholar 

  2. Fujita H (1990) Polymer Solutions. Elsevier, New York

    Google Scholar 

  3. Meewes M, Ricka J, de Silva M, Nyffenegger R, Binkert T (1991) Macromolecules 24:5811 and references therein

    Google Scholar 

  4. Wu C, Zhou S (1995) Macromolecules 28:5388

    Google Scholar 

  5. Wu C, Zhou S (1995) Macromolecules 28:8381

    Google Scholar 

  6. Wang X, Qiu X, Wu C (1998) Macromolecules 31:2972

    Google Scholar 

  7. Chu B, Ying Q, Grosberg AY (1995) Macromolecules 28:180

    Google Scholar 

  8. Chu B, Ying Q (1996) Macromolecules 29:1824

    Google Scholar 

  9. Borochov N, Eisenberg H (1994) Macromolecules 27:1440

    Google Scholar 

  10. Förster S, Schmidt M, Antonietti M (1992) J Phys Chem 96:4008

    Google Scholar 

  11. Ise N, Okubo T (1980) Acc Chem Res 13:303

    Google Scholar 

  12. Ise N, Okubo T, Yamamoto K, Kawai H, Hashimoto T, Fujimura M, Hiragi Y (1980) J Am Chem Soc 102:7901

    Google Scholar 

  13. Dosho S, Ise N, Ito K, Iwai S, Kitano H, Matsuoka H, Nakamura H, Okumura H, Ono T, Sogami IS, Ueno Y, Yoshida H, Yoshiyama T (1993) Langmuir 9:394

    Google Scholar 

  14. Antonietti M, Briel A, Förster S (1996) J Chem Phys 10:7795

    Google Scholar 

  15. Gröhn F, Antonietti M (2000) Macromolecules 33:5938

    Google Scholar 

  16. Harada T, Matsuoka H, Ikeda T, Yamaoka H (2000) Langmuir 16:1612

    Google Scholar 

  17. Zhang Y, Douglas J F, Ermi BD, Amis EJ (2001) Chem Phys 114:3299

    Google Scholar 

  18. Flory PJ, Osterheld JE (1954) J Phys Chem 58:653

    Google Scholar 

  19. Eisenberg H, Woodside D (1962) J Chem Phys 36:1844

    Google Scholar 

  20. Takahashi A, Kato T, Nagasawa M (1967) J Phys Chem 71:2001

    Google Scholar 

  21. Eisenberg H, Mohan GR (1959) J Phys Chem 63:671

    Google Scholar 

  22. Eisenberg H, Casassa EF (1960) J Polym Sci 47:29

    Google Scholar 

  23. Ikegami A, Imai N (1962) J Polym Sci 56:133

    Google Scholar 

  24. Wall FT, Drenan JW (1951) J Polym Sci 7:83

    Google Scholar 

  25. Michaeli I (1960) J Polym Sci 48:291

    Google Scholar 

  26. Olvera de la Cruz M, Belloni L, Delsanti M, Dalbiez JP, Spalla O, Drifford M (1995) J Chem Phys 103:5781

    Google Scholar 

  27. Wittmer J, Johner A, Joanny JF (1995) J Phys (Paris) II 5:635

    Google Scholar 

  28. Imai N, Onishi T (1959) J. Chem. Phys. 30:1115

    Google Scholar 

  29. Oosawa F (1971) Polyelectrolytes, Marcel Dekker, New York

    Google Scholar 

  30. Manning GS (1978) J. Chem. Phys. 51:924, 934, 3249, (1969) Biophys. Chem. 9:65

    Google Scholar 

  31. Manning GS (1978) Biophys Chem 9:65

    Google Scholar 

  32. Flory PJ (1953) J Chem Phys 21:162

    Google Scholar 

  33. Muthukumar M (1987) J Chem Phys 86:7230

    Google Scholar 

  34. Muthukumar M (1996) J Chem Phys 105:5183

    Google Scholar 

  35. Odijk T (1977) J Polym Sci Polym Phys Ed 15:477

    Google Scholar 

  36. Odijk T, Houwaart AC (1978) J Polym Sci Polym Phys Ed 16:627

    Google Scholar 

  37. Skolnick J, Fixman M (1977) Macromolecules 10:944

    Google Scholar 

  38. Fixman M, Skolnick J (1978) Macromolecules 11:863

    Google Scholar 

  39. Le Bret (1982) J Polym Phys 76:6248

    Google Scholar 

  40. Barrat JL, Joanny JF (1996) Adv Chem Phys XCIV: 1

    Google Scholar 

  41. Li H, Witten TA (1995) Macromolecules 28:5921

    Google Scholar 

  42. Ha BY, Thirumalai D (1995) Macromolecules 28:577

    Google Scholar 

  43. Beer M, Schmidt M, Muthukumar M (1997) Macromolecules 30:8375

    Google Scholar 

  44. Kuhn W, Künzle O, Katchalsky A (1948) Helv Chim Acta 31:1994

    Google Scholar 

  45. De Gennes PG, Pincus P, Velasco RM, Borchard F (1976) J Phys France 37:1461

    Google Scholar 

  46. Reed WF, Ghosh S, Medjadhi G, Francois J (1991) Macromolecules 24:6189

    Google Scholar 

  47. Des Cloizeaux J, Jannink G (1990) Polymers in Solution, Their Modeling and Struture. Clarendon Press, Oxford

    Google Scholar 

  48. Muthukumar M, Nickel BG (1987) J Chem Phys 86:460

    Google Scholar 

  49. Gupta SK, Forsmann WL (1972) Macromolecules 5:779

    Google Scholar 

  50. Takahashi A, Yamori S, Kagawa I, (1962) Kogyo Kagaku Zasshi 83:11

    Google Scholar 

  51. Nagasawa M (1988) In: Nagasawa M (ed) Studies in Polymer Science. Elsevier, Amsterdam 2:49 and references therein

    Google Scholar 

  52. Yamakawa H, Fujji M (1973) Macromolecules 6:407

    Google Scholar 

  53. Reith D, Müller B, Müller-Plathe F, Wiegand S (2002) J Chem Phys 116:9100

    Google Scholar 

  54. Schweins R, Huber K (2003) Polymer, submitted

    Google Scholar 

  55. Akcasu AZ, Benmouna M (1978) Macromolecules 11:1193

    Google Scholar 

  56. Barrett A (1984) J Macromolecules 17:1561

    Google Scholar 

  57. Huber K, Burchard W, Akcasu AZ (1985) Macromolecules 18:2743

    Google Scholar 

  58. Burchard W (1983) Advances in Polymer Science 48:1

    Google Scholar 

  59. Vrentas JS, Liu HT, Duda JC (1980) J Polym Sci Polym Phys Ed 18:633

    Google Scholar 

  60. Schmidt M, Burchard W (1981) Macromolecules 14:210

    Google Scholar 

  61. Armstrong RW, Strauss UP (1969) Encyclopedia of Polymer Science and Technology. Wiley, Vol. 10, p. 781

    Google Scholar 

  62. Lifson S, Katchalsky A (1954) J Polym Sci 13:43

    Google Scholar 

  63. Alfrey T, Berg PW, Morawetz H (1951) J Polym Sci 7:543

    Google Scholar 

  64. Wagner, M (2000) Ph.D.-thesis, University of Stuttgart

    Google Scholar 

  65. Oppermann W, Wagner M (1999) Langmuir 15:4089

    Google Scholar 

  66. Takahashi A, Kato N, Nagasawa M (1970) J Phys Chem 74:944

    Google Scholar 

  67. Karlström, G (1985) J Phys Chem 85:4962

    Google Scholar 

  68. Kjellander, R (2001) Electrostatic Effects in Soft Matter 317

    Google Scholar 

  69. Israelachvili, J (1992) Intermolecular and Surface Forces, 2nd edn. Academic Press, London

    Google Scholar 

  70. Kosower, Klinedinst, JACS 78, 3493 (1956)

    Google Scholar 

  71. Hoffmann, RW (1976) Aufklärung von Reaktionsmechanismen. Thieme, p 129

    Google Scholar 

  72. Müller, RH (1996) Zetapotential und Partikelladung. WVG Stuttgart

    Google Scholar 

  73. Pochard I, Foissy A, Couchot P (1999) Colloid Polym Sci 277:818

    Google Scholar 

  74. Huber K (1993) J Phys Chem 97:9825

    Google Scholar 

  75. Schweins R, Huber K (2001) Eur Phys JE 5:117

    Google Scholar 

  76. Schweins R (2002) PhD Thesis Fachbereich 13 “Chemie und Chemietechnik” der Universität Paderborn

    Google Scholar 

  77. Sabbagh I, Delsanti M (2000) Eur Phys JE 1:75

    Google Scholar 

  78. Francois J, Truong ND, Medjahdi G, Mestdagh MM (1997) Polymer 38:6115

    Google Scholar 

  79. Peng S, Wu C (1999) Macromolecules 32:585

    Google Scholar 

  80. Heitz C, Francois J (1990) Polymer 40:3331

    Google Scholar 

  81. Sabbagh I, Delsanti M, Lesieur P (1999) Eur Phys JB 12:253

    Google Scholar 

  82. Wu C, Zhou S (1995) Macromolecules 28:5388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Huber .

Editor information

Manfred Schmidt

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Volk, N., Vollmer, D., Schmidt, M., Oppermann, W., Huber, K. Conformation and Phase Diagrams of Flexible Polyelectrolytes. In: Schmidt, M. (eds) Polyelectrolytes with Defined Molecular Architecture II. Advances in Polymer Science, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b11348

Download citation

  • DOI: https://doi.org/10.1007/b11348

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00556-8

  • Online ISBN: 978-3-540-36463-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics