Skip to main content

Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins

  • Chapter
  • First Online:
Microbial Protein Toxins

Part of the book series: Topics in Current Genetics ((TCG,volume 11))

Abstract

Supported by an endogenous killer plasmid DNA system that codes for an anti-proliferative zymocin toxin, the dairy yeast Kluyveromyces lactis has attracted research into inter-yeast pathogenesis. Molecularly, gene disruption and shuffle techniques have proven powerful means to study components essentially required for the maintenance of the killer plasmid system, namely, autonomously operating replication and transcription apparatuses. Moreover, by studying zymocin action towards sensitive Saccharomyces cerevisiae cells, a multi-step response has surfaced that involves chitin docking, import and communication of zymocin’s γ-toxin with Elongator’s toxin-target (TOT) function and eventually, a terminal G1 block. Though apparently different with respect to toxin-target strategies, novel yeast killers that are phylogenetically related to the K. lactis system have shown to establish cell surface contact by zymocin-like chitin binding. Hence, research into zymocin as a model may provide new insights into evolution of yeast pathosystems and proliferation control by toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL, Goldstein SA (1999) A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99:283-291

    Article  CAS  PubMed  Google Scholar 

  • 2. Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395-405

    Article  CAS  PubMed  Google Scholar 

  • 3. Butler AR, White JH, Stark MJR (1991a) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137:1749-1757

    Google Scholar 

  • 4. Butler AR, Porter M, Stark MJR (1991b) Intracellular expression of Kluyveromyces lactis toxin g subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7:617-625

    CAS  PubMed  Google Scholar 

  • 5. Butler AR, O’Donnell RW, Martin VJ, Gooday GW, Stark MJR (1991c) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483-488

    CAS  PubMed  Google Scholar 

  • 6. Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJR (1994) Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 14:6306-6316

    CAS  PubMed  Google Scholar 

  • 7. Collum RG, Brutsaert S, Lee G, Schindler C (2000) A Stat3-interacting protein (StIP1) regulates cytokine signal transduction. Proc Natl Acad Sci USA 97:10120-10125

    Article  CAS  PubMed  Google Scholar 

  • 8. Drebot MA, Johnston GC, Friesen JD, Singer RA (1993) An impaired RNA polymerase II activity in Saccharomyces cerevisiae causes cell-cycle inhibition at START. Mol Gen Genet 241:327-334

    CAS  PubMed  Google Scholar 

  • 9. Fellows J, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2000) The Elp2 subunit of elongator and elongating RNA polymerase II holoenzyme is a WD40 repeat protein. J Biol Chem 275:12896-12899

    Article  CAS  PubMed  Google Scholar 

  • 10. Fichtner L, Schaffrath R (2002) KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Microbiol 44:865-875

    Google Scholar 

  • 11. Fichtner L, Frohloff F, Bürkner K, Larsen M, Breunig KD, Schaffrath R (2002a) Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43:783-791

    Google Scholar 

  • 12. Fichtner L, Frohloff F, Jablonowski D, Stark MJR, Schaffrath R (2002b) Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Mol Microbiol 45:817-826

    Google Scholar 

  • 13. Fichtner L, Jablonowski D, Frohloff F, Schaffrath R (2003a) Phenotypic analysis of the Kluyveromyces lactis killer phenomenon. In: Wolf K, Breunig KD, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology, Springer-Verlag Berlin, pp179-183

    Google Scholar 

  • 14. Fichtner L, Jablonowski D, Schierhorn A, Kitamoto HK, Stark MJR, Schaffrath R (2003b) Elongator’s toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49:1297-1307

    Google Scholar 

  • 15. Frohloff F, Fichtner L, Jablonowski D, Breunig KD, Schaffrath R (2001) Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20:1993-2003

    Article  CAS  PubMed  Google Scholar 

  • 16. Frohloff F, Jablonowski D, Fichtner L, Schaffrath R (2003) Subunit communications crucial for the functional integrity of the yeast RNA polymerase II Elongator (g-toxin target (TOT)) complex. J Biol Chem 278:956-961

    Article  CAS  PubMed  Google Scholar 

  • 17. Fukuhara H (1995) Linear DNA plasmids of yeasts. FEMS Microbiol Lett 131:1-9

    Article  CAS  PubMed  Google Scholar 

  • 18. Furukawa K, Mizushima N, Noda T, Ohsumi Y (2000) A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 275:7462-7465

    Article  CAS  PubMed  Google Scholar 

  • 19. Gilbert C, Kristjuhan A, Winkler GS, Svejstrup JQ (2004) Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol Cell 14:457-464

    Article  CAS  PubMed  Google Scholar 

  • 20. Goehring AS, Rivers DM, Sprague GF (2003) Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol Biol Cell 14:4329-4341

    Article  CAS  PubMed  Google Scholar 

  • 21. Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F (2000) Regulation of yeast H+-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20:7654-7661

    Article  CAS  PubMed  Google Scholar 

  • 22. Gunge N (1995) Plasmid DNA and the killer phenomenon in Kluyveromyces. In: Kück U (ed) The Mycota II, Genetics and biotechnology, Springer-Verlag Berlin, pp189-209

    Google Scholar 

  • 23. Gunge N, Tokunaga M (2004) Linear DNA plasmids and killer system of Kluyveromyces lactis. In: Kück U (ed) The Mycota II, Genetics and biotechnology (2nd ed), Springer-Verlag Berlin, pp199-217

    Google Scholar 

  • 24. Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and chatacterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145:382-390

    CAS  PubMed  Google Scholar 

  • 25. Hayman GT, Bolen PL (1991) Linear DNA plasmids of Pichia inositovora are associated with a novel killer toxin activity. Curr Genet 19:389-393

    CAS  PubMed  Google Scholar 

  • 26. Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast. Nucleic Acids Res 12:7581-7597

    CAS  PubMed  Google Scholar 

  • 27. Jablonowski D, Schaffrath R (2002) Saccharomyces cerevisiae RNA polymerase II is affected by Kluyveromyces lactis zymocin. J Biol Chem 277:26276-26280

    Article  CAS  PubMed  Google Scholar 

  • 28. Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJR, Schaffrath R (2001a) Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor. Yeast 18:1285-1299

    Article  CAS  PubMed  Google Scholar 

  • 29. Jablonowski D, Frohloff F, Fichtner L, Stark MJR, Schaffrath R (2001b) Kluyveromyces lactis zymocin mode of action is linked to RNA polymerase II function via Elongator. Mol Microbiol 42:1095-1105

    Google Scholar 

  • 30. Jablonowski D, Butler AR, Fichtner L, Gardiner D, Schaffrath R, Stark MJR (2001c) Sit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Genetics 159:1479-1489

    CAS  PubMed  Google Scholar 

  • 31. Jablonowski D, Fichtner L, Frohloff F, Schaffrath R (2003) Chitin binding capability of the zymocin complex from Kluyveromyces lactis. In: Wolf K, Breunig KD, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology, Springer-Verlag Berlin, pp191-194

    Google Scholar 

  • 32. Jablonowski D, Fichtner L, Stark MJR, Schaffrath R (2004) The yeast Elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Mol Biol Cell 15:1459-1469

    Article  CAS  PubMed  Google Scholar 

  • 33. Kafadar KA, Zhu H, Snyder M, Cyert MS (2003) Negative regulation of calcineurin signaling by Hrr25p, a yeast homolog of casein kinase I. Genes Dev 17:2698-2708

    Article  CAS  PubMed  Google Scholar 

  • 34. Kawamoto S, Sasaki T, Itahashi S, Hatsuyama Y, Ohno T (1993) A mutant allele skt5 affecting protoplast regeneration and killer toxin resistance has double mutations in its wild type structural gene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 57:1391-1393

    CAS  PubMed  Google Scholar 

  • 35. Kämper J, Meinhardt F, Gunge N, Esser K (1989a) New recombinant linear DNA elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res 17:1781

    Google Scholar 

  • 36. Kämper J, Meinhardt F, Gunge N, Esser K (1989b) In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres. Mol Cell Biol 9:3931-3937

    PubMed  Google Scholar 

  • 37. Kämper J, Esser K, Gunge N, Meinhardt F (1991) Heterologous expression on the linear DNA killer plasmid from Kluyveromyces lactis. Curr Genet 19:109-118

    PubMed  Google Scholar 

  • 38. Kim JH, Lane WS, Reinberg D (2002) Human Elongator facilitates RNA polymerase II transcription through chromatin. Proc Natl Acad Sci USA 99:1241-12461

    CAS  PubMed  Google Scholar 

  • 39. Kishida M, Tokunaga M, Katayose Y, Yajima H, Kawamura-Watabe A, Hishinuma, F (1996) Isolation and genetic characterization of pGKL killer-insensitive mutants (iki) from Saccharomyces cerevisiae. Biosci Biotech Biochem 60:798-780

    CAS  Google Scholar 

  • 40. Kitada K, Gunge N (1988) Palindrome-hairpin linear plasmids possessing only part of the ORF1 gene of the yeast killer plasmid pGKL1. Mol Gen Genet 215:46-52

    CAS  PubMed  Google Scholar 

  • 41. Kitamoto HK, Hasebe A, Ohmomo S, Suto E G, Muraki M, Iimura Y (1999) Prevention of aerobic spoilage of maize silage by a genetically modified killer yeast, Kluyveromyces lactis, defective in the ability to grow on lactic acid. Appl Environ Microbiol 65:4697-4700

    CAS  PubMed  Google Scholar 

  • 42. Kitamoto HK, Jablonowski D, Nagase J, Schaffrath R (2002) Defects in yeast RNA polymerase II transcription elicit hypersensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Genet Genomics 268:49-55

    Article  CAS  PubMed  Google Scholar 

  • 43. Klassen R, Meinhardt F (2002) Linear plasmids pWR1A and pWR1B of the yeast Wingea robertsiae are associated with a killer phenotype. Plasmid 48:142-148

    Article  CAS  PubMed  Google Scholar 

  • 44. Klassen R, Meinhardt F (2003) Structural and functional analysis of the killer element pPin1-3 from Pichia inositovora. Mol Genet Genomics 270:190-199

    Article  CAS  PubMed  Google Scholar 

  • 45. Klassen R, Tontsidou L, Larsen M, Meinhardt F (2001) Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast 18:953-961

    Article  CAS  PubMed  Google Scholar 

  • 46. Klassen R, Jablonowski D, Schaffrath R, Meinhardt F (2002) Genome organization of the linear Pichia etchellsii plasmid pPE1A: evidence for expression of an extracellular chitin binding protein homologous to the a-subunit of the Kluyveromyces lactis killer toxin. Plasmid 47:224-233

    Article  CAS  PubMed  Google Scholar 

  • 47. Klassen R, Teichert S, Meinhardt F (2004) Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation. Mol Microbiol 53:263-273

    Google Scholar 

  • 48. Krogan N, Greenblatt JF (2001) Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol Cell Biol 21:8203-8212

    Article  CAS  PubMed  Google Scholar 

  • 49. Larsen M, Meinhardt F (2000) Kluyveromyces lactis killer system: identification of a new gene encoded by pGKL2. Curr Genet 38:271-275

    Article  CAS  PubMed  Google Scholar 

  • 50. Larsen M, Gunge N, Meinhardt F (1998) Kluyveromyces lactis killer plasmid pGKL2: Evidence for a viral-like capping enzyme encoded by ORF3. Plasmid 40:243-246

    Article  CAS  PubMed  Google Scholar 

  • 51. Lew DJ, Weinert T, Pringle JR (1997) Cell cycle control in Saccharomyces cerevisiae. In: Pringle JR, Broach JR, Jones EW (eds.) The molecular and cellular biology of the yeast Saccharomyces cerevisiae, CSHL Press, New York, vol 3, pp 607-696

    Google Scholar 

  • 52. Li Y, Takagi Y, Jiang Y, Tokunaga M, Erdjument-Bromage H, Tempst P, Kornberg RD (2001) A multiprotein complex that interacts with RNA polymerase II Elongator. J Biol Chem 276:29628-29631

    Article  CAS  PubMed  Google Scholar 

  • 53. Liu S, Leppla SH (2003) Retroviral insertional mutagenesis identifies a small protein required for synthesis of diphthamide, the target of bacterial ADP-ribosylating toxins. Mol Cell 12:603-613

    Article  CAS  PubMed  Google Scholar 

  • 54. Luke MM, Dellaseta F, Di Como CJ, Sugimoto H, Kobayashi R, Arndt K T (1996) The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol Cell Biol 16:2744-2755

    CAS  PubMed  Google Scholar 

  • 55. Mattheakis LC, Sor F, Collier RJ (1993) Diphthamide synthesis in Saccharomyces cerevisiae: structure of the DPH2 gene. Gene 132:149-154

    Article  CAS  PubMed  Google Scholar 

  • 56. McCusker JH, Perlin DS, Haber JE (1987) Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol 7:4082-4088

    CAS  PubMed  Google Scholar 

  • 57. McNeel DG, Tamanoi F (1991) Terminal region recognition factor 1, a DNA binding protein recognising the ITRs of the pGKL linear plasmids. Proc Natl Acad Sci USA 88:11398-11402

    CAS  PubMed  Google Scholar 

  • 58. Mehlgarten C, Schaffrath R (2003) Mutant casein kinase I (Hrr25p/Kti14p) abrogates the G1 cell cycle arrest induced by Kluyveromyces lactis zymocin in budding yeast. Mol Genet Genomics 269:188-196

    CAS  PubMed  Google Scholar 

  • 59. Mehlgarten C, Schaffrath R (2004) After chitin-docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cell Microbiol 6:569-580

    Article  CAS  PubMed  Google Scholar 

  • 60. Meinhardt, F, Schaffrath R (2001) Extranuclear inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in Botany, Springer-Verlag Berlin, vol 62, pp51-70

    Google Scholar 

  • 61. Meinhardt F, Wodara C, Larsen M, Schickel J (1994) A novel approach to express a heterologous gene on Kluyveromyces lactis linear killer plasmids: expression of the bacterial aph gene from a cytoplasmic promoter fragment not fused in frame. Plasmid 32:318-327

    Article  CAS  PubMed  Google Scholar 

  • 62. Meinhardt F, Schaffrath R, Larsen M (1997) Microbial linear plasmids. Appl Microbiol Biotechnol 47:329-336

    Article  CAS  PubMed  Google Scholar 

  • 63. Meijer WJ, Horcajadas JA, Salas M (2001) F29 family of phages. Microbiol Mol Biol Rev 65:261-287

    Google Scholar 

  • 64. Nelissen H, Clarke JH, De Block M, De Block S, Vanderhaeghen R, Zielinski RE, Dyer T, Lust S, Inze D, Van Lijsebettens M (2003) DRL1, a homolog of the yeast Tot4/Kti12 protein, has a function in meristem activity and organ growth in plants. Plant Cell 15:639-654

    Article  CAS  PubMed  Google Scholar 

  • 65. Niwa O, Sakaguchi K, Gunge N (1981) Curing of the killer deoxyribonucleic acid plasmids of Kluyveromyces lactis. J Bacteriol 148:988-990

    CAS  PubMed  Google Scholar 

  • 66. Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3:109-118

    Article  CAS  PubMed  Google Scholar 

  • 67. Perlin DS, Harris SL, Seto-Young D, Haber JE (1989) Defective H+-ATPase of hygromycin B-resistant pma1 mutants from Saccharomyces cerevisiae. J Biol Chem 264: 21857-21864

    CAS  PubMed  Google Scholar 

  • 68. Romanos MA, Boyd A (1988) A transcriptional barrier to expression of cloned toxin genes of the linear plasmid k1 of Kluyveromyces lactis: evidence that native k1 has novel promoters. Nucleic Acids Res 16:333-7350

    Google Scholar 

  • 69. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture and transport mechanism. J Cell Biol 148:635-651

    Article  CAS  PubMed  Google Scholar 

  • 70. Santos B, Duran A, Valdivieso MH (1997) CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae. Mol Cell Biol 17:2485-2496

    CAS  PubMed  Google Scholar 

  • 71. Schaffrath R (1995) The killer system of Kluyveromyces lactis: molecular genetic analysis of killer plasmid k2 gene function. PhD Thesis, University of Leicester, UK

    Google Scholar 

  • 72. Schaffrath R (2003) Genetic manipulation of the Kluyveromyces lactis killer plasmids k1 and k2. In: Wolf K, Breunig KD, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology, Springer-Verlag Berlin, pp185-190

    Google Scholar 

  • 73. Schaffrath R, Meacock PA (1995) Kluyveromyces lactis killer plasmid pGKL2: Molecular analysis of an essential gene, ORF5. Yeast 11:615-628

    CAS  PubMed  Google Scholar 

  • 74. Schaffrath R, Meacock PA (1996) A cytoplasmic gene shuffle system in Kluyveromyces lactis: use of epitope-tagging to detect a killer plasmid-encoded gene product. Mol Microbiol 19:545-554

    Google Scholar 

  • 75. Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of Kluyveromyces lactis. Fungal Genet Biol 30:173-190

    Article  CAS  PubMed  Google Scholar 

  • 76. Schaffrath R, Meacock PA (2001) An SSB encoded by and operating on linear killer plasmids from Kluyveromces lactis. Yeast 18:1239-1247

    Article  CAS  PubMed  Google Scholar 

  • 77. Schaffrath R, Stark MJR, Gunge N, Meinhardt F (1992) Kluyveromyces lactis killer system: ORF1 of pGKL2 has no function in immunity expression and is dispensable for killer plasmid replication and maintenance. Curr Genet 21:357-363

    CAS  PubMed  Google Scholar 

  • 78. Schaffrath R, Soond SM, Meacock PA (1995a) The DNA and RNA polymerase structural genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology 141:2591-2599

    Google Scholar 

  • 79. Schaffrath R, Soond SM, Meacock PA (1995b) Cytoplasmic gene expression in yeast: a plasmid-encoded transcription system in Kluyveromyces lactis. Biochem Soc Transactions 23:128

    Google Scholar 

  • 80. Schaffrath R, Meinhardt F, Meacock PA (1996) Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. Mol Gen Genet 250:286-294

    Article  CAS  PubMed  Google Scholar 

  • 81. Schaffrath R, Meinhardt F, Meacock PA (1997a) ORF7 of yeast plasmid pGKL2: analysis of gene expression in vivo. Curr Genet 31:190-192

    Article  CAS  PubMed  Google Scholar 

  • 82. Schaffrath R, Stark MJR, Struhl K (1997b) Toxin-mediated cell cycle arrest in yeast: the killer phenomenon of Kluyveromyces lactis. Bioforum Int 1:83-85

    CAS  Google Scholar 

  • 83. Schaffrath R, Meinhardt F, Meacock PA (1999) Molecular manipulation of Kluyveromyces lactis linear DNA plasmids: gene targeting and plasmid shuffles. FEMS Microbiol Lett 178:201-210

    Article  CAS  PubMed  Google Scholar 

  • 84. Schaffrath R, Sasnauskas K, Meacock PA (2000) Use of gene shuffles to study the cytoplasmic transcription system operating on Kluyveromyces lactis linear DNA plasmids. Enzyme Microbial Technol 26:664-670

    Article  CAS  Google Scholar 

  • 85. Schickel J, Helmig C, Meinhardt F (1996) Kluyveromyces lactis killer system: analysis of cytoplasmic promoters of the linear plasmids. Nucleic Acids Res 24:1879-1886

    Article  CAS  PubMed  Google Scholar 

  • 86. Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257-276

    Article  CAS  PubMed  Google Scholar 

  • 87. Schmitt MJ, Klavehn P, Wang J, Schonig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142:2655-2662

    Google Scholar 

  • 88. Schründer J, Meinhardt F (1995) An extranuclear expression system for analysis of cytoplasmic promoters of yeast linear killer plasmids. Plasmid 33:139-151

    Article  PubMed  Google Scholar 

  • 89. Schründer J, Gunge N, Meinhardt F (1996) Extranuclear expression of the bacterial xylose-isomerase (xylA) and UDP-glucose-dehydrogenase (hasB) genes in yeast using Kluyveromyces lactis linear killer plasmids as vectors. Curr Microbiol 33:323-330

    Article  PubMed  Google Scholar 

  • 90. Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5:1995-2002

    CAS  PubMed  Google Scholar 

  • 91. Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1-29

    CAS  Google Scholar 

  • 92. Sugisaki Y, Gunge N, Sakaguchi K, Tamura G (1983) Kluyveromyces lactis killer toxin inhibits adenylate cyclase of sensitive yeast cells. Nature 304:464-466

    CAS  PubMed  Google Scholar 

  • 93. Sugisaki Y, Gunge N, Sakaguchi K, Yamasaki M, Tamura G (1984) Characterization of a novel killer toxin encoded by a double-stranded linear DNA plasmid of Kluyveromyces lactis. Eur J Biochem 141:241-245

    CAS  PubMed  Google Scholar 

  • 94. Sugaya K, Sasanuma S, Cook PR, Mita K (2001) A mutation in the largest (catalytic) subunit of RNA polymerase II and its relation to arrest of the cell cycle in G(1) phase. Gene 274:77-81

    Article  CAS  PubMed  Google Scholar 

  • 95. Sutton A, Immanuel D, Arndt KT (1991) The SIT4 protein phosphatase functions in late G1 for progression into S phase. Mol Cell Biol 11:2133-2148

    CAS  PubMed  Google Scholar 

  • 96. Sun TP, Webster RE (1987) Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J Bacteriol 169:2667-2674

    CAS  PubMed  Google Scholar 

  • 97. Takata H, Fukuda K, Meinhardt F, Gunge N (2000) Telomere sequences attached to nuclearly migrated yeast linear plasmid. Plasmid 43:137-143

    Article  CAS  PubMed  Google Scholar 

  • 98. Takeda M, Hiraishi H, Takesako T, Tanase S, Gunge N (1996) The terminal protein of the linear DNA plasmid pGKL2 shares an N-terminal domain of the plasmid-encoded DNA polymerase. Yeast 12:241-246

    Article  CAS  PubMed  Google Scholar 

  • 99. Takita M, Castilho-Valavicius B (1993) Absence of cell wall chitin in Saccharomyces cerevisiae leads to resistance to Kluyveromyces lactis killer toxin. Yeast 9:589-598

    CAS  PubMed  Google Scholar 

  • 100. Tanguy-Rougeau C, Wesolowski-Louvel M, Fukuhara H (1988) The Kluyveromyces lactis KEX1 gene encodes a subtilisin-type serin proteinase. FEBS Lett 234:464-470

    Article  CAS  PubMed  Google Scholar 

  • 101. Tanguy-Rougeau C, Chen XJ, Wesolowski-Louvel M, Fukuhara H (1990) Expression of a foreign KmR gene in linear killer DNA plasmids in yeast. Gene 91:43-50

    Article  CAS  PubMed  Google Scholar 

  • 102. Terwisscha van Scheltinga AC, Armand S, Kalk KH, Isogai A, Henrissat B, Dijkstra BW (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34:15619-15623

    PubMed  Google Scholar 

  • 103. Tiggemann M, Jeske S, Larsen M, Meinhardt F (2001) Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast 18:815-825

    Article  CAS  PubMed  Google Scholar 

  • 104. Tokunaga M, Wada N, Hishinuma F (1987a) Expression and identification of immunity determinants on the linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15:1031-1046

    CAS  PubMed  Google Scholar 

  • 105. Tokunaga M, Wada N, Hishinuma F (1987b) A novel yeast secretion vector utilizing secretion signal of killer toxin encoded on the yeast linear DNA plasmid pGKL1. Biochem Biophys Res Commun 144:613-619

    CAS  PubMed  Google Scholar 

  • 106. Tokunaga M, Wada N, Hishinuma F (1988) A novel yeast secretion signal isolated from 28K killer precursor protein encoded on the linear DNA plasmid pGKL1. Nucleic Acids Res 16:7499-7511

    CAS  PubMed  Google Scholar 

  • 107. Tokunaga M, Wada N, Hishinuma F (1989) Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17:3435-3446

    CAS  PubMed  Google Scholar 

  • 108. Tommasino M (1991) Killer system of Kluyveromyces lactis: the open reading frame 10 of the pGKL2 plasmid encodes a putative DNA binding protein. Yeast 7:245-252

    CAS  PubMed  Google Scholar 

  • 109. Tommasino M, Ricci S, Galeotti CL (1988) Genome organization of the killer plasmid pGKL2 from Kluyveromyces lactis. Nucleic Acids Res 16:5863-5678

    CAS  PubMed  Google Scholar 

  • 110. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364-2368

    Article  CAS  PubMed  Google Scholar 

  • 111. Trilla JA, Cos T, Duran A, Roncero C (1997) Characterization of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 13:795-807

    Article  CAS  PubMed  Google Scholar 

  • 112. Trilla JA, Duran A, Roncero C (1999) Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 145:1153-1163

    Article  CAS  PubMed  Google Scholar 

  • 113. Walker GM (1998) Yeast Physiology and Biotechnology. John Wiley & Sons Inc, New York

    Google Scholar 

  • 114. Wesolowski-Louvel M, Tanguy-Rougeau C, Fukuhara H (1988) A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4:71-81

    CAS  PubMed  Google Scholar 

  • 115. White JH, Butler AR, Stark MJR (1989) Kluyveromyces lactis toxin does not inhibit yeast adenylyl cyclase. Nature 341:666-668

    Article  CAS  Google Scholar 

  • 116. Wickner RB (1996) Prions and RNA viruses of Saccharomyces cerevisiae. Annu Rev Genet 30:109-139

    Article  CAS  PubMed  Google Scholar 

  • 117. Wilson DW, Meacock PA (1988) Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res 16:8097-8112

    CAS  PubMed  Google Scholar 

  • 118. Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2001) RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 276:32743-32749

    Article  CAS  PubMed  Google Scholar 

  • 119. Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2002) Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci USA 99:3517-3522

    Article  CAS  PubMed  Google Scholar 

  • 120. Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4:123-128

    Article  CAS  PubMed  Google Scholar 

  • 121. Wittschieben BO, Fellows J, Du W, Stillman DJ, Svejstrup JQ (2000) Overlapping roles for the histone acetyltransferase activities of SAGA and elongator in vivo. EMBO J 19:3060-3068

    Article  CAS  PubMed  Google Scholar 

  • 122. Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18:77-80

    CAS  PubMed  Google Scholar 

  • 123. Yajima H, Tokunaga M, Nakayama-Murayama A, Hishinuma F (1997) Characterization of IKI1 and IKI3 genes conferring pGKL killer sensitivity on Saccharomyces cerevisiae. Biosci Biotech Biochem 61:704-709

    CAS  Google Scholar 

  • 124. Ziman M, Chuang JS, Tsung M, Hamamoto S, Schekman R (1998) Chs6p-dependent anterograde transport of Chs3p from chitosomes to the plasma membrane in Saccharomyces cerevisiae. Mol Biol Cell 9:1565-15

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffael Schaffrath .

Editor information

Manfred J. Schmitt Raffael Schaffrath

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Schaffrath, R., Meinhardt, F. Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. In: Schmitt, M.J., Schaffrath, R. (eds) Microbial Protein Toxins. Topics in Current Genetics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b100196

Download citation

Publish with us

Policies and ethics