Skip to main content

Advertisement

Log in

Municipal solid waste incineration bottom ash: a competent raw material with new possibilities

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

According to the economic feasibilities, municipal solid wastes (MSW) are being dumped or treated in different possible manners. Municipal solid waste incinerated ash (MSWIA) is one of the final products of MSW treatment plants after incineration. Due to less sustainable waste management options, MSWIA is produced in tons and dumped into landfills. Researchers in various developmental project  suggest using MSWIA as an economical and eco-friendly mode of final disposal. The use of MSW incinerated bottom ash (MIBA) has an exceptional potential of supporting sustainability by conserving natural resources. The paper targets the possible benefits of MIBA in various construction and soil improvement projects by compensating the primary aggregates. The partial replacement of primary aggregates is a durable and cost-effective option for equal or improved strength. The addition of MSWIA is not new, but the studies available are limited in number. The presence of certain chemical compounds in MIBA is leading to advanced industrial-based applications. The residue can be a primary raw material  for synthesizing new compounds,  in land recovery and Hydrogen gas production. Some studies have favored its utilization in the most natural form, whereas some suggest avoiding the usage due to its various environmental and strength-based limitations. The article investigates significant studies and confirms the possible opportunities from waste residues for more competent raw material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MSW:

Municipal Solid Waste

MSWIA:

Municipal solid waste incinerated ashes

MIBA:

MSW incinerated bottom ash

MIFA:

MSW incinerated fly ash

LCA:

Life cycle analysis

WTE:

Waste to energy

SEM:

Scanning Electroscope Microscopy

LOI:

Loss on ignition

TOC:

Total organic carbon

PC:

Portland cement

CFA:

Coal fly ash

GGBS:

Ground granulated blast furnace slag

LS:

Limestone

Cd:

Cadmium

Cu:

Copper

Pb:

Lead

Zn:

Zinc

HCl:

Hydrogen chloride

NaCl:

Sodium chloride

PCDD:

Polychlorinated dibenzo-p-dioxins

Ca:

Calcium

Si:

Silicon

Al:

Aluminum

Ba:

Barium

Cr:

Chromium

Ni:

Nickel

OPC:

Ordinary Portland cement

C3S:

Tricalcium silicate

VBA:

Vitrified bottom ashes

PAH:

Polycyclic aromatic hydrocarbon

PCDF:

Polychlorinated dibenzodioxins

EOX:

Extractable halogens inorganic bonding

BTX:

Benzene–toluene–xylene

BTEX:

Benzene-toluene-ethylbenzene-xylene

References

  1. Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. The World Bank

  2. Burnley SJ (2007) The use of chemical composition data in waste management planning—a case study. Waste Manag 27:327–336. https://doi.org/10.1016/j.wasman.2005.12.020

    Article  Google Scholar 

  3. Liu A, Ren F, Lin WY, Wang JY (2015) A review of municipal solid waste environmental standards with a focus on incinerator residues. Int J Sustain Built Environ 4(2):165–188

    Article  Google Scholar 

  4. Wu B, Wang D, Chai X, Takahashi F, Shimaoka T (2016) Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives. Front Environ Sci Eng 10:1–9. https://doi.org/10.1007/s11783-016-0847-9

    Article  Google Scholar 

  5. Bierman PM, Rosen CJ (1994) Phosphate and trace metal availability from sewage-sludge incinerator ash. J Environ Qual 23:822–830. https://doi.org/10.2134/jeq1994.00472425002300040030x

    Article  Google Scholar 

  6. Hjelmar O (1996) Disposal strategies for municipal solid waste incineration residues. J Hazard Mater 47:345–368. https://doi.org/10.1016/0304-3894(95)00111-5

    Article  Google Scholar 

  7. Tillman D (2012) Incineration of municipal and hazardous solid wastes

  8. Brunner PH, Rechberger H (2015) Waste to energy—key element for sustainable waste management. Waste Manag 37:3–12. https://doi.org/10.1016/j.wasman.2014.02.003

    Article  Google Scholar 

  9. Stehlík P (2009) Contribution to advances in waste-to-energy technologies. J Clean Prod 17:919–931. https://doi.org/10.1016/j.jclepro.2009.02.011

    Article  Google Scholar 

  10. Tsai WT (2010) Analysis of the sustainability of reusing industrial wastes as energy source in the industrial sector of Taiwan. J Clean Prod 18:1440–1445. https://doi.org/10.1016/j.jclepro.2010.05.004

    Article  Google Scholar 

  11. Tsai WT (2012) An analysis of waste management policies on utilizing biosludge as material resources in Taiwan. Sustainability 4:1879–1887. https://doi.org/10.3390/su4081879

    Article  Google Scholar 

  12. Lombardi L, Carnevale E, Corti A (2015) A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag 37:26–44. https://doi.org/10.1016/j.wasman.2014.11.010

    Article  Google Scholar 

  13. Tsai WT (2019) Promoting the circular economy via waste-to-power (WTP) in Taiwan. Resources 8:95. https://doi.org/10.3390/resources8020095

    Article  Google Scholar 

  14. Dhir RK, Dyer TD, Halliday JE, Paine K (2002) Value-added recycling of incinerator ashes. Final Report to Department of the Environment, Transport and the Regions, CTU/1802. https://researchportal.bath.ac.uk/en/publications/value-added-recycling-of-incinerator-ashes-final-report-to-depart. Accessed 26 Aug 2020

  15. Li X, Bertos MF, Hills CD, Carey PJ, Simon S (2007) Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Manag 27:1200–1206. https://doi.org/10.1016/j.wasman.2006.06.011

    Article  Google Scholar 

  16. Yakubu Y, Zhou J, Ping D, Shu Z, Chen Y (2018) Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash. J Environ Manag 207:243–248. https://doi.org/10.1016/j.jenvman.2017.11.042

    Article  Google Scholar 

  17. Fuchs B, Track C, Lang S, Botanik HG-A (1997) Undefined: Salt effects of processed municipal solid waste incinerator bottom ash on vegetation and underground water. pascal-francis.inist.fr

  18. Ching SH, Ma HW (2011) Life cycle risk assessment of bottom ash reuse. J Hazard Mater 190:308–316. https://doi.org/10.1016/j.jhazmat.2011.03.053

    Article  Google Scholar 

  19. Huber F, Fellner J (2018) Integration of life cycle assessment with monetary valuation for resource classification: the case of municipal solid waste incineration fly ash. Resour Conserv Recycl 139:17–26. https://doi.org/10.1016/j.resconrec.2018.08.003

    Article  Google Scholar 

  20. Li X, Yu Z, Ma B, Technology-Mater, BW-J of WU of (2010) Undefined: effect of MSWI fly ash and incineration residues on cement performances. Springer

    Google Scholar 

  21. Breslin V, Reaven S, Schwartz M, Swanson L, Zweig M, Bortman M, Schubel J (1993) Secondary materials: engineering properties, environmental consequences, and social and economic impacts. Final report, Oak Ridge, TN

  22. Lynn CJ, Dhir OBE RK, Ghataora GS (2016) Municipal incinerated bottom ash characteristics and potential for use as aggregate in concrete. Constr Build Mater 127:504–517. https://doi.org/10.1016/j.conbuildmat.2016.09.132

    Article  Google Scholar 

  23. Singh D, Kumar T, James BE, Hanifa M (2019) Utilization of MSWI ash for geotechnical applications: a review. Springer, Singapore

    Book  Google Scholar 

  24. Cho BH, Nam BH, An J, Youn H (2020) Municipal solid waste incineration (MSWI) ashes as construction materials-a review. Materials (Basel) 13:1–30. https://doi.org/10.3390/ma13143143

    Article  Google Scholar 

  25. Cho BH, Nam BH, An J, Youn H (2020) Municipal solid waste incineration (MSWI) ashes as construction materials-a review. www.mdpi.com/journal/materials. Accessed 8 Sep 2020

  26. Wong S, Mah AXY, Nordin AH, Nyakuma BB, Ngadi N, Mat R, Amin NAS, Ho WS, Lee TH (2020) Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07933-y

    Article  Google Scholar 

  27. Municipal Solid Waste Incinerator Residues, vol 67, 1st edn. https://www.elsevier.com/books/municipal-solid-waste-incinerator-residues/chandler/978-0-444-82563-6. Accessed 8 Sep 2020

  28. Wiles CC (1996) Municipal solid waste combustion ash: state-of-the-knowledge. J Hazard Mater 47:325–344. https://doi.org/10.1016/0304-3894(95)00120-4

    Article  Google Scholar 

  29. Yang S, Saffarzadeh A, Shimaoka T, Kawano T (2014) Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment. J Hazard Mater 267:214–220. https://doi.org/10.1016/j.jhazmat.2013.12.045

    Article  Google Scholar 

  30. Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Assbichler S, Klein R, Lechner P (2003) Management of municipal solid waste incineration residues. Waste Manag 23:61–88. https://doi.org/10.1016/S0956-053X(02)00161-7

    Article  Google Scholar 

  31. Wei Y, Shimaoka T, Saffarzadeh A, Takahashi F (2011) Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J Hazard Mater 187:534–543. https://doi.org/10.1016/j.jhazmat.2011.01.070

    Article  Google Scholar 

  32. Siddique R (2010) Use of municipal solid waste ash in concrete. Resour Conserv Recycl 55:83–91

    Article  Google Scholar 

  33. Lynn CJ, Ghataora GS, Dhir OBE RK (2017) Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. Int J Pavement Res Technol 10:185–201. https://doi.org/10.1016/j.ijprt.2016.12.003

    Article  Google Scholar 

  34. Bertolini L, Carsana M, Cassago D, Curzio AQ, Collepardi M (2004) MSWI ashes as mineral additions in concrete. Cem Concr Res 34:1899–1906. https://doi.org/10.1016/j.cemconres.2004.02.001

    Article  Google Scholar 

  35. Müller U, Rübner K (2006) The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cem Concr Res 36:1434–1443. https://doi.org/10.1016/j.cemconres.2006.03.023

    Article  Google Scholar 

  36. Biganzoli L, Ilyas A, van Praagh M, Persson KM, Grosso M (2013) Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction. Waste Manag 33:1174–1181. https://doi.org/10.1016/j.wasman.2013.01.037

    Article  Google Scholar 

  37. Gao X, Yuan B, Yu QL, Brouwers HJH (2017) Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. J Clean Prod 164:410–419. https://doi.org/10.1016/j.jclepro.2017.06.218

    Article  Google Scholar 

  38. Casanova S, Silva RV, de Brito J, Pereira MFC (2021) Mortars with alkali-activated municipal solid waste incinerator bottom ash and fine recycled aggregates. J Clean Prod 289:125707. https://doi.org/10.1016/j.jclepro.2020.125707

    Article  Google Scholar 

  39. Flesoura G, Monich PR, Murillo Alarcón R, Desideri D, Bernardo E, Vleugels J, Pontikes Y (2021) Porous glass-ceramics made from microwave vitrified municipal solid waste incinerator bottom ash. Constr Build Mater 270:121452. https://doi.org/10.1016/j.conbuildmat.2020.121452

    Article  Google Scholar 

  40. Singh D, Kumar A (2019) Mechanical characteristics of municipal solid waste incineration bottom ash treated with cement and fiber. Innov Infrastruct Solut 4:61. https://doi.org/10.1007/s41062-019-0247-7

    Article  Google Scholar 

  41. Zhang S, Ghouleh Z, He Z, Hu L, Shao Y (2021) Use of municipal solid waste incineration bottom ash as a supplementary cementitious material in dry-cast concrete. Constr Build Mater 266:120890. https://doi.org/10.1016/j.conbuildmat.2020.120890

    Article  Google Scholar 

  42. Ashraf MS, Ghouleh Z, Shao Y (2019) Production of eco-cement exclusively from municipal solid waste incineration residues. Resour Conserv Recycl 149:332–342. https://doi.org/10.1016/j.resconrec.2019.06.018

    Article  Google Scholar 

  43. Caprai V, Schollbach K, Florea MVA, Brouwers HJH (2020) Investigation of the hydrothermal treatment for maximizing the MSWI bottom ash content in fine lightweight aggregates. Constr Build Mater 230:116947

    Article  Google Scholar 

  44. Yan K, Sun H, Gao F, Ge D, You L (2020) Assessment and mechanism analysis of municipal solid waste incineration bottom ash as aggregate in cement stabilized macadam. J Clean Prod 244:118750. https://doi.org/10.1016/j.jclepro.2019.118750

    Article  Google Scholar 

  45. Saikia N, Mertens G, Van Balen K, Elsen J, Van Gerven T, Vandecasteele C (2015) Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar. Constr Build Mater 96:76–85. https://doi.org/10.1016/j.conbuildmat.2015.07.185

    Article  Google Scholar 

  46. Alam Q, Lazaro A, Schollbach K, Brouwers HJH (2020) Chemical speciation, distribution and leaching behavior of chlorides from municipal solid waste incineration bottom ash. Chemosphere 241:124985. https://doi.org/10.1016/j.chemosphere.2019.124985

    Article  Google Scholar 

  47. Song Y, Li B, Yang E-H, Liu Y, Chen Z (2016) Gas generation from incinerator bottom ash: potential aerating agent for lightweight concrete production. J Mater Civ Eng 28:04016030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001524

    Article  Google Scholar 

  48. Nikravan M, Ramezanianpour AA, Maknoon R (2020) Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant. J Environ Manag 260:110042. https://doi.org/10.1016/j.jenvman.2019.110042

    Article  Google Scholar 

  49. Biswal BK, Chen Z, Yang EH (2019) Hydrothermal process reduced Pseudomonas aeruginosa PAO1-driven bioleaching of heavy metals in a novel aerated concrete synthesized using municipal solid waste incineration bottom ash. Chem Eng J 360:1082–1091. https://doi.org/10.1016/j.cej.2018.10.155

    Article  Google Scholar 

  50. Joseph AM, Snellings R, Van den Heede P, Matthys S, De Belie N (2018) The use of municipal solidwaste incineration ash in various building materials: a Belgian point of view. Materials (Basel) 11:141. https://doi.org/10.3390/ma11010141

    Article  Google Scholar 

  51. Zhao Y, Zhu YT (2019) Metals leaching in permeable asphalt pavement with municipal solid waste ash aggregate. Water (Switzerland) 11:2186. https://doi.org/10.3390/w11102186

    Article  Google Scholar 

  52. Margallo M, Taddei MBM, Hernández-Pellón A, Aldaco R, Irabien Á (2015) Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Technol Environ Policy 17:1333–1353. https://doi.org/10.1007/s10098-015-0961-6

    Article  Google Scholar 

  53. Yakubu Y, Zhou J, Shu Z, Zhang Y, Wang W, Mbululo Y (2018) Potential application of pre-treated municipal solid waste incineration fly ash as cement supplement. Environ Sci Pollut Res 25:16167–16176. https://doi.org/10.1007/s11356-018-1851-3

    Article  Google Scholar 

  54. Tang J, Steenari BM (2016) Leaching optimization of municipal solid waste incineration ash for resource recovery: a case study of Cu, Zn, Pb and Cd. Waste Manag 48:315–322. https://doi.org/10.1016/j.wasman.2015.10.003

    Article  Google Scholar 

  55. Wu HY, Ting YP (2006) Metal extraction from municipal solid waste (MSW) incinerator fly ash—chemical leaching and fungal bioleaching. Enzyme Microb Technol 38:839–847. https://doi.org/10.1016/j.enzmictec.2005.08.012

    Article  Google Scholar 

  56. Xu TJ, Ting YP (2009) Fungal bioleaching of incineration fly ash: metal extraction and modeling growth kinetics. Enzyme Microb Technol 44:323–328. https://doi.org/10.1016/j.enzmictec.2009.01.006

    Article  Google Scholar 

  57. Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H (2017) Metal removal from Municipal Solid Waste Incineration fly ash: a comparison between chemical leaching and bioleaching. Waste Manag 60:397–406. https://doi.org/10.1016/j.wasman.2016.07.025

    Article  Google Scholar 

  58. Yang JZ, Yang Y, Li Y, Chen L, Zhang J, Die Q, Fang Y, Pan Y, Huang Q (2018) Leaching of metals from asphalt pavement incorporating municipal solid waste incineration fly ash. Environ Sci Pollut Res 25:27106–27111. https://doi.org/10.1007/s11356-018-2472-6

    Article  Google Scholar 

  59. Zhou X, Zhou M, Wu X, Han Y, Geng J, Wang T, Wan S, Hou H (2017) Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag. Chemosphere 182:76–84. https://doi.org/10.1016/j.chemosphere.2017.04.072

    Article  Google Scholar 

  60. Hashemi SSG, Mahmud HB, Ghuan TC, Chin AB, Kuenzel C, Ranjbar N (2019) Safe disposal of coal bottom ash by solidification and stabilization techniques. Constr Build Mater 197:705–715. https://doi.org/10.1016/j.conbuildmat.2018.11.123

    Article  Google Scholar 

  61. Mu Y, Saffarzadeh A, Shimaoka T (2018) Utilization of waste natural fishbone for heavy metal stabilization in municipal solid waste incineration fly ash. J Clean Prod 172:3111–3118. https://doi.org/10.1016/j.jclepro.2017.11.099

    Article  Google Scholar 

  62. Wang WX, Gao X, Li T, Cheng S, Yang H, Qiao Y (2018) Stabilization of heavy metals in fly ashes from municipal solid waste incineration via wet milling. Fuel 216:153–159. https://doi.org/10.1016/j.fuel.2017.11.045

    Article  Google Scholar 

  63. Qiu Q, Chen Q, Jiang X, Lv G, Chen Z, Lu S, Ni M, Yan J, Lin X, Song H, Cao J (2019) Improving microwave-assisted hydrothermal degradation of PCDD/Fs in fly ash with added Na2HPO4 and water-washing pretreatment. Chemosphere 220:1118–1125. https://doi.org/10.1016/j.chemosphere.2018.12.166

    Article  Google Scholar 

  64. Qiu Q, Jiang X, Lü G, Chen Z, Lu S, Ni M, Yan J, Deng X (2019) Degradation of PCDD/Fs in MSWI fly ash using a microwave-assisted hydrothermal process. Chin J Chem Eng 27:1708–1715. https://doi.org/10.1016/j.cjche.2018.10.015

    Article  Google Scholar 

  65. Xie R, Xu Y, Huang M, Zhu H, Chu F (2017) Assessment of municipal solid waste incineration bottom ash as a potential road material. Road Mater Pavement Des 18:992–998. https://doi.org/10.1080/14680629.2016.1206483

    Article  Google Scholar 

  66. Kamei T, Ahmed A, Shibi T (2012) Effect of freeze–thaw cycles on durability and strength of very soft clay soil stabilised with recycled Bassanite. Cold Reg Sci Technol 82:124–129. https://doi.org/10.1016/j.coldregions.2012.05.016

    Article  Google Scholar 

  67. Tang Q, Zhang Y, Gao Y, Gu F (2017) Use of cement-chelated, solidified, municipal solid waste incinerator (MSWI) fly ash for pavement material: mechanical and environmental evaluations. Can Geotech J 54:1553–1566. https://doi.org/10.1139/cgj-2017-0007

    Article  Google Scholar 

  68. Gong B, Deng Y, Yang Y, Wang C, He Y, Sun X, Liu Q, Yang W (2017) Effects of microwave-assisted thermal treatment on the fate of heavy metals in municipal solid waste incineration fly ash. Energy Fuels 31:12446–12454. https://doi.org/10.1021/acs.energyfuels.7b02156

    Article  Google Scholar 

  69. Dou X, Ren F, Nguyen MQ, Ahamed A, Yin K, Chan WP, Chang VWC (2017) Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew Sustain Energy Rev 79:24–38

    Article  Google Scholar 

  70. Meer I, Nazir R (2018) Removal techniques for heavy metals from fly ash. J Mater Cycles Waste Manag 20:703–722

    Article  Google Scholar 

  71. Qiao XC, Tyrer M, Poon CS, Cheeseman CR (2008) Novel cementitious materials produced from incinerator bottom ash. Resour Conserv Recycl 52:496–510. https://doi.org/10.1016/j.resconrec.2007.06.003

    Article  Google Scholar 

  72. Rocca S, van Zomeren A, Costa G, Dijkstra JJ, Comans RNJ, Lombardi F (2013) Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species. Waste Manag 33:373–381. https://doi.org/10.1016/j.wasman.2012.11.004

    Article  Google Scholar 

  73. Inglezakis VJ, Moustakas K, Khamitova G, Tokmurzin D, Sarbassov Y, Rakhmatulina R, Serik B, Abikak Y, Poulopoulos SG (2018) Current municipal solid waste management in the cities of Astana and Almaty of Kazakhstan and evaluation of alternative management scenarios. Clean Technol Environ Policy 20:503–516. https://doi.org/10.1007/s10098-018-1502-x

    Article  Google Scholar 

  74. Hay R, Ostertag CP (2019) On utilization and mechanisms of waste aluminium in mitigating alkali-silica reaction (ASR) in concrete. J Clean Prod 212:864–879. https://doi.org/10.1016/j.jclepro.2018.11.288

    Article  Google Scholar 

  75. Zhu W, Rao XH, Liu Y, Yang EH (2018) Lightweight aerated metakaolin-based geopolymer incorporating municipal solid waste incineration bottom ash as gas-forming agent. J Clean Prod 177:775–781. https://doi.org/10.1016/j.jclepro.2017.12.267

    Article  Google Scholar 

  76. Giro-Paloma J, Mañosa J, Maldonado-Alameda A, Quina MJ, Chimenos JM (2019) Rapid sintering of weathered municipal solid waste incinerator bottom ash and rice husk for lightweight aggregate manufacturing and product properties. J Clean Prod 232:713–721. https://doi.org/10.1016/j.jclepro.2019.06.010

    Article  Google Scholar 

  77. Chuang KH, Lu CH, Chen JC, Wey MY (2018) Reuse of bottom ash and fly ash from mechanical-bed and fluidized-bed municipal incinerators in manufacturing lightweight aggregates. Ceram Int 44:12691–12696. https://doi.org/10.1016/j.ceramint.2018.04.070

    Article  Google Scholar 

  78. Tang P, Xuan D, Poon CS, Tsang DCW (2019) Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): feasibility and influence of binder types. J Hazard Mater 368:689–697. https://doi.org/10.1016/j.jhazmat.2019.01.112

    Article  Google Scholar 

  79. Singh D, Kumar A (2017) Geo-environmental application of municipal solid waste incinerator ash stabilized with cement. J Rock Mech Geotech Eng 9:370–375. https://doi.org/10.1016/j.jrmge.2016.11.008

    Article  Google Scholar 

  80. Singh D, Kumar A (2019) Factors affecting properties of MSWI bottom ash employing cement and fiber for geotechnical applications. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00519-w

    Article  Google Scholar 

  81. Collivignarelli MC, Abbà A, Sorlini S, Bruggi M (2017) Evaluation of concrete production with solid residues obtained from fluidized-bed incineration of MSW-derived solid recovered fuel (SRF). J Mater Cycles Waste Manag 19:1374–1383. https://doi.org/10.1007/s10163-016-0523-y

    Article  Google Scholar 

  82. Silva RV, de Brito J, Lynn CJ, Dhir RK (2019) Environmental impacts of the use of bottom ashes from municipal solid waste incineration: a review. J Mater Cycles Waste Manag 20:703–722

    Google Scholar 

  83. Kikuchi R (2001) Recycling of municipal solid waste for cement production: Pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resour Conserv Recycl 31:137–147. https://doi.org/10.1016/S0921-3449(00)00077-X

    Article  Google Scholar 

  84. Pan JR, Huang C, Kuo JJ, Lin SH (2008) Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manag 28:1113–1118. https://doi.org/10.1016/j.wasman.2007.04.009

    Article  Google Scholar 

  85. Lam CHK, Barford JP, McKay G (2011) Utilization of municipal solid waste incineration ash in Portland cement clinker. Clean Technol Environ Policy 13:607–615. https://doi.org/10.1007/s10098-011-0367-z

    Article  Google Scholar 

  86. Zhu W, Chen X, Zhao A, Struble LJ, Yang EH (2019) Synthesis of high strength binders from alkali activation of glass materials from municipal solid waste incineration bottom ash. J Clean Prod 212:261–269. https://doi.org/10.1016/j.jclepro.2018.11.295

    Article  Google Scholar 

  87. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003

    Article  Google Scholar 

  88. Myers RJ, Bernal SA, Provis JL (2017) Phase diagrams for alkali-activated slag binders. Cem Concr Res 95:30–38. https://doi.org/10.1016/j.cemconres.2017.02.006

    Article  Google Scholar 

  89. Gong B, Deng Y, Yang Y, Tan SN, Liu Q, Yang W (2017) Solidification and biotoxicity assessment of thermally treated municipal solid waste incineration (MSWI) fly ash. Int J Environ Res Public Health 14:626. https://doi.org/10.3390/ijerph14060626

    Article  Google Scholar 

  90. Ren J, Hu L, Dong Z, Tang L, Xing F, Liu J (2021) Effect of silica fume on the mechanical property and hydration characteristic of alkali-activated municipal solid waste incinerator (MSWI) fly ash. J Clean Prod 295:126317. https://doi.org/10.1016/j.jclepro.2021.126317

    Article  Google Scholar 

  91. Liu J, Hu L, Tang L, Ren J (2021) Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material. J Hazard Mater 402:123451. https://doi.org/10.1016/j.jhazmat.2020.123451

    Article  Google Scholar 

  92. Pavlík Z, Keppert M, Pavlíková M, Volfová P, Černý R (2011) Application of MSWI bottom ash as alternative aggregate in cement mortar. WIT Trans Ecol Environ 148:335–342. https://doi.org/10.2495/RAV110311

    Article  Google Scholar 

  93. Pavlík Z, Keppert M, Pavlíková M, Fořt J, Michalko O, Černý R (2012) MSWI bottom ash as eco-aggregate in cement mortar design. WIT Trans Ecol Environ 165:127–138. https://doi.org/10.2495/ARC120121

    Article  Google Scholar 

  94. Kim J, An J, Nam BH, Tasneem KM (2016) Investigation on the side effects of municipal solid waste incineration ashes when used as mineral addition in cement-based material. Road Mater Pavement Des 17:345–364. https://doi.org/10.1080/14680629.2015.1083463

    Article  Google Scholar 

  95. Kim J, Nam BH, Al Muhit BA, Tasneem KM, An J (2015) Effect of chemical treatment of MSWI bottom ash for its use in concrete. Mag Concr Res 67:179–186. https://doi.org/10.1680/macr.14.00170

    Article  Google Scholar 

  96. Saffarzadeh A, Arumugam N, Shimaoka T (2016) Aluminum and aluminum alloys in municipal solid waste incineration (MSWI) bottom ash: a potential source for the production of hydrogen gas. Int J Hydrogen Energy 41:820–831. https://doi.org/10.1016/j.ijhydene.2015.11.059

    Article  Google Scholar 

  97. Nithiya A, Saffarzadeh A, Shimaoka T (2018) Hydrogen gas generation from metal aluminium–water interaction in municipal solid waste incineration (MSWI) bottom ash. Waste Manag 73:342–350. https://doi.org/10.1016/j.wasman.2017.06.030

    Article  Google Scholar 

  98. Yin K, Chan WP, Dou X, Lisak G, Chang VWC (2018) Co-complexation effects during incineration bottom ash leaching via comparison of measurements and geochemical modeling. J Clean Prod 189:155–168. https://doi.org/10.1016/j.jclepro.2018.03.320

    Article  Google Scholar 

  99. Guo L, Wu DQ (2017) Study of recycling Singapore solid waste as land reclamation filling material. Sustain Environ Res 27:1–6. https://doi.org/10.1016/j.serj.2016.10.003

    Article  Google Scholar 

  100. Guo L, Wu DQ (2018) Study of leaching scenarios for the application of incineration bottom ash and marine clay for land reclamation. Sustain Environ Res 28:396–402. https://doi.org/10.1016/j.serj.2018.06.004

    Article  Google Scholar 

  101. Yao J, Qiu Z, Kong Q, Chen L, Zhu H, Long Y, Shen D (2017) Migration of Cu, Zn and Cr through municipal solid waste incinerator bottom ash layer in the simulated landfill. Ecol Eng 102:577–582. https://doi.org/10.1016/j.ecoleng.2017.02.063

    Article  Google Scholar 

  102. Yao J, Chen L, Zhu H, Shen D, Qiu Z (2017) Migration of nitrate, nitrite, and ammonia through the municipal solid waste incinerator bottom ash layer in the simulated landfill. Environ Sci Pollut Res 24:10401–10409. https://doi.org/10.1007/s11356-017-8706-1

    Article  Google Scholar 

  103. Wu H, Zhu Y, Bian S, Ko JH, Li SFY, Xu Q (2018) H2S adsorption by municipal solid waste incineration (MSWI) fly ash with heavy metals immobilization. Chemosphere 195:40–47. https://doi.org/10.1016/j.chemosphere.2017.12.068

    Article  Google Scholar 

  104. Rincon Romero A, Salvo M, Bernardo E (2018) Up-cycling of vitrified bottom ash from MSWI into glass-ceramic foams by means of ‘inorganic gel casting’ and sinter-crystallization. Constr Build Mater 192:133–140. https://doi.org/10.1016/j.conbuildmat.2018.10.135

    Article  Google Scholar 

  105. Wang Y, Huang L, Lau R (2016) Conversion of municipal solid waste incineration bottom ash to sorbent material: effect of ash particle size. J Taiwan Inst Chem Eng 68:351–359. https://doi.org/10.1016/j.jtice.2016.09.026

    Article  Google Scholar 

  106. Wong S, Yac’cob NAN, Ngadi N, Hassan O, Inuwa IM (2018) From pollutant to solution of wastewater pollution: synthesis of activated carbon from textile sludge for dye adsorption. Chin J Chem Eng 26:870–878. https://doi.org/10.1016/j.cjche.2017.07.015

    Article  Google Scholar 

  107. Md Arshad SH, Ngadi N, Wong S, Saidina Amin N, Razmi FA, Mohamed NB, Inuwa IM, Abdul Aziz A (2019) Optimization of phenol adsorption onto biochar from oil palm empty fruit bunch (EFB). Malays J Fundam Appl Sci 15:1–5. https://doi.org/10.11113/mjfas.v15n2019.1199

    Article  Google Scholar 

  108. Luo H, Wu Y, Zhao A, Kumar A, Liu Y, Cao B, Yang EH (2017) Hydrothermally synthesized porous materials from municipal solid waste incineration bottom ash and their interfacial interactions with chloroaromatic compounds. J Clean Prod 162:411–419. https://doi.org/10.1016/j.jclepro.2017.06.082

    Article  Google Scholar 

  109. Luo H, He D, Zhu W, Wu Y, Chen Z, Yang EH (2019) Humic acid-induced formation of tobermorite upon hydrothermal treatment with municipal solid waste incineration bottom ash and its application for efficient removal of Cu(II) ions. Waste Manag 84:83–90. https://doi.org/10.1016/j.wasman.2018.11.037

    Article  Google Scholar 

  110. Blasenbauer D, Huber F, Lederer J, Quina MJ, Blanc-Biscarat D, Bogush A, Bontempi E, Blondeau J, Chimenos JM, Dahlbo H, Fagerqvist J, Giro-Paloma J, Hjelmar O, Hyks J, Keaney J, Lupsea-Toader M, O’Caollai CJ, Orupõld K, Pająk T, Simon FG, Svecova L, Šyc M, Ulvang R, Vaajasaari K, Van Caneghem J, van Zomeren A, Vasarevičius S, Wégner K, Fellner J (2020) Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manag 102:868–883. https://doi.org/10.1016/j.wasman.2019.11.031

    Article  Google Scholar 

  111. Kim MH, Song YE, Song HB, Kim JW, Hwang SJ (2011) Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea. Waste Manag 31:2112–2120. https://doi.org/10.1016/j.wasman.2011.04.019

    Article  Google Scholar 

  112. Huang TY, Chiueh PT, Lo SL (2017) Life-cycle environmental and cost impacts of reusing fly ash. Resour Conserv Recycl 123:255–260. https://doi.org/10.1016/j.resconrec.2016.07.001

    Article  Google Scholar 

  113. Golestani B, Nam BH, Ercan T, Tatari O (2017) Life-cycle carbon, energy, and cost analysis of utilizing municipal solid waste bottom ash and recycled asphalt shingle in hot-mix asphalt. In: Geotechnical Special Publication. American Society of Civil Engineers (ASCE), pp 333–344

  114. Sarmiento LM, Clavier KA, Paris JM, Ferraro CC, Townsend TG (2019) Critical examination of recycled municipal solid waste incineration ash as a mineral source for portland cement manufacture—a case study. Resour Conserv Recycl 148:1–10. https://doi.org/10.1016/j.resconrec.2019.05.002

    Article  Google Scholar 

  115. Sormunen LA, Kolisoja P (2017) Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: field performance study. Waste Manag 64:107–116. https://doi.org/10.1016/j.wasman.2017.03.014

    Article  Google Scholar 

  116. Zoorob S, Collop A, Brown S (2002) Performance of bituminous and hydraulic materials in pavements

  117. Bayuseno AP, Schmahl WW (2010) Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag 30:1509–1520. https://doi.org/10.1016/j.wasman.2010.03.010

    Article  Google Scholar 

  118. The Vaendoera test road, Sweden: a case study of long-term properties of roads constructed with MSWI bottom ash; Projekt Vaendoera: En studie av laangtidsegenskaper hos vaegar anlagda med bottenaska fraan avfallsfoerbraenning (Technical Report) | ETDEWEB. https://www.osti.gov/etdeweb/biblio/20745860. Accessed 24 Feb 2021

  119. Åberg A, Kumpiene J, Ecke H (2006) Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI). Sci Total Environ 355:1–12. https://doi.org/10.1016/j.scitotenv.2005.03.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Ethics declarations

Conflict of interest

Sanjeev Kumar and Davinder Singh confirm that there is no conflict of interest associated with the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, D. Municipal solid waste incineration bottom ash: a competent raw material with new possibilities. Innov. Infrastruct. Solut. 6, 201 (2021). https://doi.org/10.1007/s41062-021-00567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00567-0

Keywords

Navigation