Skip to main content
Log in

Reductive Transformation of Aqueous Pollutants Using Heterogeneous Photocatalysis: A Review

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

Photocatalytic oxidation (PCO) and photocatalytic reduction (PCR) are two different pathways employed for degradation of aqueous pollutants. While abundant published material is available on PCO, PCR appears to be less explored. PCR can be a promising technique especially for removal of heavy metals, recovery of noble metals, and dehalogenation of halogenated pollutants. Besides the photocatalyst, hole-scavengers (HS) plays very important role in PCR. The basic mechanism involved in PCR of pollutants and importance of proper selection of HS has been delineated. An effort has also been made to summarize the influence of various operational parameters like type and concentration of photocatalyst, type and concentration of HS, and initial pH on the efficiency of photocatalytic reduction of the pollutants. Possibility of using sequential photocatalytic reduction–oxidation for complete mineralization of toxic pollutants is also discussed. The development of various heterojunction structures for efficient separation of charge carriers is also critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U.I. Gaya, A.H. Abdullah, Heterogonous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C 9, 1–12 (2008)

    Article  Google Scholar 

  2. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res. 8(3–4), 501–551 (2004)

    Article  Google Scholar 

  3. M.O. Awaleh, Y.D. Soubaneh, Waste water treatment in chemical industries: the concept and current technologies. Hydrol. Current Res. 5(1), 1–12 (2014)

    Google Scholar 

  4. U.S. Environmental Protection Agency (EPA)( 2017) Water Quality Standards Handbook: Chapter 3: Water Quality Criteria. EPA-823-B-17–001

  5. M.A. Fox, DulayMT, Heterogeneous Photocatalysis. Chem. Rev. 93, 341–357 (1993)

    Article  Google Scholar 

  6. N. Shaham-Waldmann, Y. Paz, Beyond charge separation: The effect of coupling between titanium dioxide and CNTs on the adsorption and photocatalytic reduction of Cr(VI). Chem. Eng. J. 231, 49–58 (2013)

    Article  Google Scholar 

  7. J. Rivera-Utrilla, M. Sanchez-Polo, M.M. Abdel Daeim, R. Ocampo-Perez, Role of activated carbon in photocatalytic degradation of 2,4-dichloropheoxyacetic acid by UV/TiO2/activated carbon system. Appl. Catal. B: Environ. 126, 100–107 (2012)

    Article  Google Scholar 

  8. M. Vallejo, M. Fresnedo San Roman, I. Ortiz, A. Irabien, Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment. Chemosphere 118, 44–56 (2015)

    Article  Google Scholar 

  9. J.C. Yu, T.Y. Kwong, Q. Luo, Z. Cai, Photocatalytic oxidation of triclosan. Chemosphere 65, 390–399 (2006)

    Article  Google Scholar 

  10. H. Son, G. Ko, K. Zoh, Kinetics and mechanism of photolysis and TiO2photocatalysis of triclosan. J. Hazard. Mater. 166, 954–960 (2009)

    Article  Google Scholar 

  11. J. Schneider, M. Matsuoka, J. Zhang, Yu. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2Photocatalysis: Mechanisms and Materials. Chem. Review 114, 9919–9986 (2014)

    Article  Google Scholar 

  12. N. Aman, T. Mishra, J. Hait, R.K. Jana, Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst. J. Hazard. Mater. 186, 360–366 (2011)

    Article  Google Scholar 

  13. F. Deng, X. Lu, Y. Luo, J. Wang, W. Che, R. Yang, D.D. Dionysiou, Novel visible-light-driven direct Z-scheme CdS/CuInS2nanoplates for excellent photocatalytic degradation performance and highly-efficient Cr(VI) reduction. Chem. Eng. J. 361, 1451–1461 (2019)

    Article  Google Scholar 

  14. K. Doudrick, O. Monzon, A. Mangonon, K. Hristovski, P. Westerhoff, Nitrate reduction in water using commercial titanium dioxide photocatalysts (P25, P90 and Hombikat UV 100). J. Environ. Eng. 138, 852–861 (2012)

    Article  Google Scholar 

  15. K. Doudrick, T. Yang, K. Hristovski, P. Westerhoff, Photocatalytic nitrate reduction in water: managing the hole scavenger and reaction by-product selectivity. Appl. Catal. B 136–137, 40–47 (2013)

    Article  Google Scholar 

  16. A. Herissan, J.M. Meichtry, H. Remita, C. Colbeau-Justin, M.I. Litter, Reduction of nitrate by heterogeneous photocatalysis over pure and radiolytically modified TiO2 samples in the presence of formic acid. Catal. Today 281(1), 101–108 (2017)

    Article  Google Scholar 

  17. A. Idris, E. Misran, N. Hassan, A.A. Jalil, C.E. Seng, Modified PVA-alginate encapsulated photocatalystferro photo gels for Cr (VI) reduction. J. Hazard. Mater. 227–228, 309–316 (2012)

    Article  Google Scholar 

  18. R. Jin, W. Gao, J. Chen, H. Zeng, F. Zhang, N. Liu, N. Guan, Photocatalytic reduction of nitrate ion in drinking water by using metal loaded MgTiO3-TiO2 composite semiconductor catalyst. J. Photochem. Photobiol. A. Chem. 162, 585–590 (2004)

    Article  Google Scholar 

  19. K. Kabra, R. Chaudhary, R.L. Sawhney, Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): speciation modeling of metal-citric acid complexes. J. Hazard. Mater. 155, 424–432 (2008)

    Article  Google Scholar 

  20. V.N.H. Nguyen, R. Amal, D. Beydoun, Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chem. Eng. Sci. 58, 4429–4439 (2003)

    Article  Google Scholar 

  21. F. Qin, R. Wang, G. Li, F. Tian, H. Zhao, R. Chen, Highly efficient photocatalytic reduction of Cr(VI) by bismuth hollow nanospheres. Catal. Comm. 42, 14–19 (2013)

    Article  Google Scholar 

  22. R. Qiu, D. Zhang, Z. Diao, X. Haung, C. He, J. Morel, Y. Xiong, Visible light induced photocatalytic reduction of Cr (VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation. Water Res. 46, 2299–2306 (2012)

    Article  Google Scholar 

  23. P. Sane, S. Chaudhari, P. Nemade, S. Sontakke, Photocatalytic reduction of chromium (VI) using combustion synthesized TiO2. J. Environ. Chem. Eng. 6(1), 68–73 (2018)

    Article  Google Scholar 

  24. T. Tan, D. Beydoun, R. Amal, Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J. Photochem. Photobiol. A. 159, 273–280 (2003)

    Article  Google Scholar 

  25. X. Wang, S.O. Pehkonen, A.K. Ray, Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochim. Acta 49, 1435–1444 (2004)

    Article  Google Scholar 

  26. F.X. Zhang, R.C. Jin, J.X. Chen, C.Z. Shao, W.L. Gao, L.D. Ni, N.J. Guan, High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. J. Catal. 232, 424–431 (2005)

    Article  Google Scholar 

  27. X. Zhu, C. Yuan, Y. Bao, J. Yang, Y. Wu, Photocatalytic degradation of pesticide, pyridaben on TiO2 particles. J. mol. Catal. A: Chemical 229, 95–105 (2005)

    Article  Google Scholar 

  28. L. Yin, J. Niu, Z. Shen, J. Chen, Mechanism of Reductive decomposition of pentachlorophenol by Ti-Doped β-Bi2O3 under visible light irradiation. Environ. Sci. Technol. 44, 5581–5586 (2010)

    Article  Google Scholar 

  29. Y. Wang, P. Zhang, Photocatalytic decomposition of perfluorooctanoic (PFOA) by TiO2 in the presence of oxalic acid. J. Hazard. Mater. 192, 1869–1875 (2011)

    Article  Google Scholar 

  30. Y. Guo, X. Lou, D. Xiao, L. Xu, Z. Wang, J. Liu, Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates. J. Hazard. Mater. 241–242, 301–306 (2012)

    Article  Google Scholar 

  31. B.R. Shah, U.D. Patel, Mechanistic aspects of photocatalytic degradation of Lindane by TiO2 in the presence of Oxalic acid and EDTA as hole-scavengers. J. Environ. Chem. Eng. 9, 105458 (2021)

    Article  Google Scholar 

  32. B.R. Shah, U.D. Patel, Aqueous pollutants in water bodies can be photocatalytically reduced by TiO2 nano-particles in the presence of natural organic matter. Sep. Purif. Technol. 209, 748–755 (2019)

    Article  Google Scholar 

  33. W. Wu, S. Liang, Y. Chen, L. Shen, H. Zheng, L. Wu, High efficient photocatalytic reduction 4-nitroaniline to p-phenylenediamine over microcrystalline SrBi2Nb2O9. Catal. Communications 17, 39–42 (2012)

    Article  Google Scholar 

  34. T. Zhang, L. You, Y. Zhang, Photocatalytic reduction of p-chloronitrobenzene on illuminated nano-titanium dioxide particles. Dyes Pigments 68, 95–100 (2006)

    Article  Google Scholar 

  35. F.T. Bekena, H. Abdullah, D.H. Kuo, M.A. Zeleke, Photocatalytic reduction of 4-nitrophenol using effective hole scavenger over novel Mg-doped Zn(O, S) nanoparticles. J Ind. Eng. Chem. 78, 116–124 (2019)

    Article  Google Scholar 

  36. M.A. Asi, C. He, M. Su, D. Xia, L. Lin, H. Deng, Y. Xiong, R. Qiu, X. Li, Photocatalytic reduction of CO2to hydrocarbons using AgBr/TiO2nanocomposities under visible light. Catal. Today 175, 256–263 (2011)

    Article  Google Scholar 

  37. G. Gao, Y. Jiao, E.R. Waclawik, A. Du, Single atom (Pd/Pt) supported on graphitic Carbon Nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138(19), 6292–6297 (2016)

    Article  Google Scholar 

  38. Y. Huo, J. Zhang, K. Dai, Q. Li, J. Lv, G. Zhu, C. Liang, All solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructurephotocatalyst with enhanced performance in photocatalytic CO2 reduction. Appl. Catal. B: Environ 241, 528–538 (2019)

    Article  Google Scholar 

  39. C. Kim, K.M. Cho, A. Al-Saggaf, I. Gereige, H.T. Jung, Z-scheme Photocatalytic CO2 Conversion on three-dimensional BiVO4/Carbon-Coated Cu2O nanowire arrays under visible light. ACS Catal. 8(5), 4170–4177 (2018)

    Article  Google Scholar 

  40. Y. Li, W. Wang, Z. Khan, M. Woo, C. Yu-Wu, P. Biswas, Photocatalytic reduction of CO2 with H2O on mesporous silica supported Cu/TiO2 catalysts. Appl. Catal. B: Environ. 100, 386–392 (2010)

    Article  Google Scholar 

  41. M. Liang, T. Borjigin, Y. Zhang, H. Liu, B. Liu, H. Guo, Z-Scheme Au@Void@g-C3N4/SnS yolk-shell heterostructures for superior photocatalytic CO2 reduction under visible light. ACS Appl. Mater. Interfaces 10(40), 34123–34131 (2018)

    Article  Google Scholar 

  42. Y. Ren, D. Zeng, W.J. Ong, Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunctionphotocatalysts for energy conversion: A review. Chinese J. Catal. 40, 289–319 (2019)

    Article  Google Scholar 

  43. S. Patnaik, P.K.M. SahooPD, Bimetallic co-effect of Au-Pd alloyed nanoparticles on mesoporous silica modified g-C3N4 for single and simultaneous photocatalytic oxidation of phenol and reduction of hexavalent chromium. J. Colloid Interf. Sci. 560, 519–535 (2020)

    Article  Google Scholar 

  44. P. Zheng, Z. Pan, H. Li, B. Bai, W. Guan, Effect of different types of scavengers on the photocatalytic removal of copper and cyanide in presence of TiO2@yeast hybrids. J. Mater. Sci: Mater. Electron 26, 6399–6410 (2015)

    Google Scholar 

  45. J. Yang, S. Lee, Removal of Cr (VI) and humic acid by using TiO2photocatalysis. Chemosphere 63, 1677–1684 (2006)

    Article  Google Scholar 

  46. D. Lei, J. Xue, Q. Bi, C. Tang, L. Zhang, 3D/2D direct Z-scheme photocatalyst Zn2SnO4/CdS for simultaneous removal of Cr(VI) and organic pollutant. Appl. Surf. Sci. 517, 146030 (2020)

    Article  Google Scholar 

  47. M. Munoz, J. Aguado, R. Grieken, J. Marugan, Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions and spent plating baths. Appl. Catal. B. Environ. 86, 53–62 (2008)

    Article  Google Scholar 

  48. R. Ma, S. Zhang, T. Wen, P. Gu, L. Li, G. Zhao, X. Wang, A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal. Today 335, 20–30 (2019)

    Article  Google Scholar 

  49. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Habib, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 261, 3–18 (2010)

    Article  Google Scholar 

  50. J. Arana, J.M. Dona-Rodriguez, D. Portillo-Carrizo, C. Fernandez-Rodriguez, J. Perez-Pena, O. Gonzalez Diaz, J.A. Navio, M. Macias, Photocatalytic degradation of phenolic compounds with new TiO2 catalysts. Appl. Catal. B: Environ. 100, 346–354 (2010)

    Article  Google Scholar 

  51. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manage. 92, 311–330 (2011)

    Article  Google Scholar 

  52. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J Ind. Eng. Chem. 26, 1–36 (2015)

    Article  Google Scholar 

  53. A.H. Mamaghani, F. Haghighat, C.S. Lee, Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B: Environ. 203, 247–269 (2017)

    Article  Google Scholar 

  54. R. Acharya, B. Naik, K. Parida, Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 9, 1448–1470 (2018)

    Article  Google Scholar 

  55. Garbarino S and Burke LD (2010) The surface active site model for formic acid electrooxidation at palladium in aqueous acid solution. Int. J. Electrochem. Sci., 828–851.

  56. D. Chen, A.K. Ray, Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 56, 1561–1570 (2001)

    Article  Google Scholar 

  57. D. Chen, M. Sivakumar, A.K. Ray, Heterogeneous photocatalysis in environmental remediation. Dev. Chem. Eng. Min. Process. 8(5–6), 505–550 (2008)

    Article  Google Scholar 

  58. A. Caviccholi, I. Gutz, Effect of scavengers on the Photocatalytic digestion of organic matter in water samples Assisted by TiO2 in suspension for the voltammetric determination of heavy metals. J. Braz. Chem. Soc. 13, 441–448 (2002)

    Google Scholar 

  59. M.R. Prairie, L.R. Evans, B.M. Stange, S.L. Martinez, An Investigation of TiO2Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals. Environ. Sci. Technol. 27, 1776–1782 (1999)

    Article  Google Scholar 

  60. N. Serpone, I. Texier, A.V. Emeline, P. Pichat, H. Hidaka, J. Zhao, Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers. J. Photochem. Photobiol. A. 136, 145–155 (2000)

    Article  Google Scholar 

  61. M. Kaise, H. Nagai, K. Tokuhashi, S. Kondo, Electron spin resonance studies of photocatalytic interface reactions of suspended M/TiO2 (M = Pt, Pd, Ir, Rh, Os, or Ru) with alcohol and acetic acid in Aqueous Media. Langmuir 10, 1345–1347 (1994)

    Article  Google Scholar 

  62. O. Fontelles-Carceller, M.J. Muñoz-Batista, J.C. Conesa, F.-G. KubackaA, H2 photo-production from methanol, ethanol and 2-propanol: Pt-(Nb)TiO2 performance under UV and visible light. Mol. Catal. 446, 88–97 (2018)

    Article  Google Scholar 

  63. Y. Wang, P. Zhang, Enhanced photochemical decomposition of environmentally persistent perfluorooctanoate by coexisting ferric ion and oxalate. Environ Sci. Pollut. Res. 23(10), 9660–9668 (2016)

    Article  Google Scholar 

  64. A. Lisovskaya, D.M. Bartels, Reduction of CO2 by hydrated electrons in high temperature water. Radiat. Phys. Chem. 158, 61–63 (2019)

    Article  Google Scholar 

  65. H. Tugaoen, S. Garcia-Segura, H.K. Westerhoff, P, Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci. Total Environ. 599–600, 1524–1551 (2017)

    Article  Google Scholar 

  66. C.R. Chenthamarakshan, K. Rajeshwar, Heterogeneous photocatalytic reduction of Cr (VI) in UV-irradiated titania suspensions: Effects of protons, Ammouium ions, and other interfacial aspects. Langmuir 16, 2715–2721 (2000)

    Article  Google Scholar 

  67. H. Li, T. Wu, B. Cai, W. Ma, Y. Sun, S. Gan, D. Han, L. Niu, Efficiently photocatalytic reduction of carcinogenic contaminant Cr (VI) upon robust AgCl: Ag hollow nanocrystals. Appl. Catal. B: Environ. 164, 344–351 (2015)

    Article  Google Scholar 

  68. M. Antonopoulou, I. Chondrodimou, F. Bairamis, A. Giannakas, I. Konstantinou, Photocatalytic reduction of Cr(VI) by char/TiO2 composite photocatalyst: optimization and modeling using the response surface methodology (RSM). Environ. Sci. Pollut. Res. 24(2), 1063–1072 (2016)

    Article  Google Scholar 

  69. R. Yan, D. Luo, C. Fu, W. Tian, P. Wu, Y. Wang, W. Jiang, Simultaneous Removal of Cu(II) and Cr(VI) Ions from Wastewater by Photoreduction with TiO2–ZrO2. J. Water Process Eng. 33, 101052 (2020)

    Article  Google Scholar 

  70. M.M. Haque, M. Muneer, D.W. Bahnemann, Semiconductor-mediated photocatalyzed degradation of a herbicide derivative, Chlorotoluron, in aqueous suspensions. Environ. Sci. Technol. 40, 4765–4770 (2006)

    Article  Google Scholar 

  71. H.K. Singh, M. Saquib, M.M. Haque, M. Muneer, D.W. Bahnemann, Titanium dioxide mediated photocatlysed degradation of phenoxyacetic acid and 2,4,5 trichlorophenoxyacetic acid, in aqueous suspension. J. Mol. Catal. A: Chemical 264, 66–72 (2007)

    Article  Google Scholar 

  72. W. Bahnemann, M. Muneer, M.M. Haque, Titanium dioxide mediated photocatalysed degradation of few selected organic pollutants in aqueous suspension. Catal. Today 124, 133–148 (2007)

    Article  Google Scholar 

  73. W. Gao, R. Jin, J. Chen, X. Guan, H. Zeng, F. Zhang, N. Guan, Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate. Catal. Today 90, 331–336 (2004)

    Article  Google Scholar 

  74. S. Abdel Moniem, M. Ali, T.A. Gad-Allah, A. Khalil, M. Ulbricht, M. El-Shahat, A. Ashmawy, H. Ibrahim, Detoxification of hexavalent chromium in wastewater containing organic substances using simonkolleite-TiO2photocatalyst. Process Saf. Environ. 95, 247–254 (2015)

    Article  Google Scholar 

  75. R. Djellabi, M.F. Ghorab, Photoreduction of toxic chromium using TiO2-immobilized under natural sunlight: effects of some hole scavengers and process parameters. Desalin. Water. Treat. 55(7), 1–8 (2014)

    Google Scholar 

  76. Q. Wu, J. Zhao, G. Qin, C. Wang, X. Tong, S. Xue, Photocatalytic reduction of Cr(VI) with TiO2 film under visible light. ApplCatal B: Environ. 142–143, 142–148 (2013)

    Article  Google Scholar 

  77. Y. Li, F. Wasgestian, Photocatalytic reduction of nitrate ions on TiO2 by oxalic acid. J. Photochem. Photobiol. A: Chem. 112, 255–259 (1998)

    Article  Google Scholar 

  78. T. Nakajima, H. Takanashi, T. Tominaga, K. Yamada, A. Ohki, Removal of arsenic and selenium compounds from aqueous media by using TiO2 photocatalytic reaction. Water Sci Tech-W Sup. 12(1), 24–30 (2012)

    Article  Google Scholar 

  79. L. Longli, L. Guoguang, L. Wenying, Q. Lin, K. Yao, Removal of chelated copper by TiO2photocatalysis: Synergetic mechanism between Cu (II) and organic ligands. Iran. J. Chem. Chem. Eng. 32(1), 103–112 (2013)

    Google Scholar 

  80. L.B. Khalil, M.W. Rophael, W.E. Mourad, The removal of the toxic Hg(II) salts from water by photocatalysis. Appl. Catal B: Environ. 36, 125–130 (2002)

    Article  Google Scholar 

  81. J. Zhou, C. Deng, S. Si, Y. Shi, X. Zhao, Study on the effect of EDTA on the photocatalytic reduction of mercury onto nanocrystallinetitania using quartz crystal microbalance and differential pulse voltammetry. Electrochim. Acta 56(5), 2062–2067 (2011)

    Article  Google Scholar 

  82. A. Paola, E. Garca-Lopez, G. Marci, L. Palmisano, A survey of photocatalytic materials fir environmental remediation. J. Hazard. Mater. 211–212, 3–29 (2012)

    Article  Google Scholar 

  83. Kohtani S, Yoshioka E, Miyabe H (2012) Photocatalytic Hydrogenation on Semiconductor Particles. Hydrogenation. Chapter 12.

  84. A. Shojaei, F. Golriz, High photocatalytic activity in nitrate reduction by using Pt/ZnOnanopaticles in the presence of formic acid as hole scavenger. Bulgarian Chem. Commun. 47, 509–514 (2015)

    Google Scholar 

  85. J. Zhang, D. Fu, S. Wang, R. Hao, Y. Xie, Photocatalytic removal of chromium(VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: Feasibility, mechanism and kinetics. J. Ind. Eng. Chem. 80, 23–32 (2019)

    Article  Google Scholar 

  86. G. Kumordzi, G. Malekshoar, E.K. Yanful, A.K. Ray, Solar photocatalytic degradation of Zn2+ using graphene based TiO2. Sep. Purif. Technol. 168, 294–301 (2016)

    Article  Google Scholar 

  87. X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (VI). Chem. Eng. J. 183, 238–243 (2012)

    Article  Google Scholar 

  88. Q. Xu, L. Zhang, J. Yu, S. Wageh, A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 21(10), 1042–1063 (2018)

    Article  Google Scholar 

  89. J. Low, J. Yu, M. Jaroniec, S. Wageh, A. Al-Ghamdi, Heterojunctionphotocatalysts. Adv. Mater. 29(20), 1601694 (2017)

    Article  Google Scholar 

  90. Kumar A, Khan M, He J, Lo IMC (2020) Visible-light-driven magnetically recyclable terephthalic acid functionalized g-C3N4/TiO2heterojunctionnanophotocatalyst for enhanced degradation of PPCPs. Appl. Catal. B: Environ., 118898.

  91. J. Zhang, Z. Liu, Z. Liu, Novel WO3/Sb2S3Heterojunctionphotocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8(15), 9684–9691 (2016)

    Article  Google Scholar 

  92. W. Chen, T.Y. Liu, T. Huang, X.H. Liu, G.R. Duan, X.J. Yang, S.M. Chen, A novel yet simple strategy to fabricate visible light responsive C, N-TiO2/g-C3N4heterostructures with significantly enhanced photocatalytic hydrogen generation. RSC Adv. 5(122), 101214–101220 (2015)

    Article  Google Scholar 

  93. A. Hezam, K. Namratha, D. Ponnamma, Q.A. Drmosh, A. Saeed, C. Cheng, K. Byrappa, Direct Cs2O-Bi2O3-ZnO heterostructures as efficient sunlight-driven photocatalysts. ACS Omega 3(9), 12260–12269 (2018)

    Article  Google Scholar 

  94. J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 243, 556–565 (2019)

    Article  Google Scholar 

  95. X. Li, J. Xiong, X. Gao, J. Ma, Z. Chen, B. Kang, J. Liu, H. Li, Z. Feng, J. Huang, Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J. Hazard Mater. 387(5), 121690 (2020)

    Article  Google Scholar 

  96. T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu, A direct Z-scheme g-C3N4/SnS2photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 352, 532–541 (2017)

    Article  Google Scholar 

  97. S. Senthilkumar, K. Porkodi, K. Gomathi, R. Geetha, A. Maheswari, N. Manomani, Sol-gel derived doped nanocrystallinetitaniacatalysedphotodegradation of methylene blue from aqueous solution. Dyes Pigment 69, 22–25 (2006)

    Article  Google Scholar 

  98. I.M. Arabatzis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, E. Papaconstantinou, M.C. Bernard, P. Falaras, Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. J. Photochem. Photobiol. A 149, 237–245 (2002)

    Article  Google Scholar 

  99. Kisch H (2001) Semiconductor Photocatalysis for Organic Synthesis. Adv.photochem., 26, 93–143.

  100. A.A. Aziz, K. Cheng, S. Ibrahim, M. Matheswaran, Saravanan, Visible light improved photocatalytic activity of magnetically separable titaniananocomposite. Chem. Eng. J. 183, 349–356 (2012)

    Article  Google Scholar 

  101. A.M. Ramesh, S. Shivanna, Visible Light Assisted Photocatalytic Degradation of Chromium (VI) by Using Nanoporous Fe2O3Hindawi. J. Materials 1, 1–13 (2018)

    Article  Google Scholar 

  102. K.M. Joshi, Shrivastava, Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS Appl. Nanosci. 1, 147–155 (2011)

    Google Scholar 

  103. G. Liu, S. You, M. Ma, H. Huang, N. Ren, Removal of nitrate by photocatalytic denitrification using nonlinear optical material. Environ. Sci. Technol. 50(20), 11218–11225 (2016)

    Article  Google Scholar 

  104. A.J. Anderson, Simultaneous photocatalytic degradation of nitrate and oxalic acid over gold promoted titania. Catal. Today 181, 171–176 (2012)

    Article  Google Scholar 

  105. T. Yang, K. Doudrick, P. Westerhoff, Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine. Water Res. 47, 1299–1307 (2013)

    Article  Google Scholar 

  106. B.R. Shah, U.D. Patel, Reductive PhotocatalyticDecolourization of an Azo Dye Reactive Black 5 Using TiO2: Mechanism and Role of Reductive Species. Desalin. Water Treat. 130, 214–225 (2018)

    Article  Google Scholar 

  107. S. Zarei, N. Farhadian, R. Akbarzadeh, M. Pirsaheb, A. Asadi, Z. Safaei, Fabrication of novel 2D Ag-TiO2/γ-Al2O3/Chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate. Int. J. Biol. Macromol. 145, 925–936 (2019)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from DST-FIST, Government of India (No. SR/ FST/ETI-395/2015(C), and Linde Engineering India Trust for the development of research facilities at the Environmental Engineering laboratory of Civil Engineering Department, FTE. MSU.

Funding

No other funding from any source is involved in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra D. Patel.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B.R., Patel, U.D. Reductive Transformation of Aqueous Pollutants Using Heterogeneous Photocatalysis: A Review. J. Inst. Eng. India Ser. A 103, 305–318 (2022). https://doi.org/10.1007/s40030-021-00586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-021-00586-1

Keywords

Navigation