Skip to main content
Log in

Mechanical Behaviour and Microstructural Investigation of Geopolymer Concrete After Exposure to Elevated Temperatures

  • Research Article -- Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, the mechanical properties and microstructure of the geopolymer concrete (GPC) after exposure to elevated temperatures have been investigated. The GPC and ordinary Portland cement (OPC) concrete specimens were exposed to high temperatures and tested for the mechanical properties and microstructure. The findings of this investigation indicate that the GPC has better compressive strength, develops minor cracks, and undergoes slight damage in the mass at the elevated temperature as compared to OPC concrete. For ambient-cured and heat-cured conditions, the experimental results of the GPC after exposure to high temperatures (600 °C onward) show almost the same mechanical properties, while the OPC concrete significantly loses the strength along with large cracks developed above 400 °C. Moreover, the scanning electron microscope test shows that the OPC concrete developed a lot of cracks and started losing the bonds between the matrix at 400 °C, while the GPC holds over its strength until 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ishak, S.A.; Hashim, H.: Low carbon measures for cement plant—a review. J. Clean. Prod. 103, 260–274 (2015). https://doi.org/10.1016/j.jclepro.2014.11.003

    Article  Google Scholar 

  2. Turk, J.; Cotič, Z.; Mladenovič, A.; Šajna, A.: Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Manag (2015). https://doi.org/10.1016/j.wasman.2015.06.035

    Article  Google Scholar 

  3. Dhadse, S.; Kumari, P.; Bhagia, L.J.: Fly ash characterization, utilization and government initiatives in India—a review. J. Sci. Ind. Res. 67, 11–18 (2008)

    Google Scholar 

  4. Central Electricity Authority: Report on fly ash generation at coal/lignite based thermal power stations and it’s utilization in the country for the year 2017–18. Central Electricity Authority, New Delhi (2018)

    Google Scholar 

  5. Radhakrishna,; Niranjan, P.S.: Prediction of the compressive strength in Fal-G compressed blocks. i-Manag. J. Civ. Eng. 3, 19–24 (2013). https://doi.org/10.26634/jce.3.1.2152

    Article  Google Scholar 

  6. Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H.: Fly ash-based geopolymer: clean production, properties and applications. J. Clean. Prod. 125, 253–267 (2016). https://doi.org/10.1016/j.jclepro.2016.03.019

    Article  Google Scholar 

  7. Phetchuay, C.; Horpibulsuk, S.; Arulrajah, A.; Suksiripattanapong, C.; Udomchai, A.: Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Appl. Clay Sci. 127–128, 134–142 (2016). https://doi.org/10.1016/j.clay.2016.04.005

    Article  Google Scholar 

  8. Pavithra, P.; Srinivasula Reddy, M.; Dinakar, P.; Hanumantha Rao, B.; Satpathy, B.K.; Mohanty, A.N.: A mix design procedure for geopolymer concrete with fly ash. J. Clean. Prod. 133, 117–125 (2016). https://doi.org/10.1016/j.jclepro.2016.05.041

    Article  Google Scholar 

  9. Shang, J.; Dai, J.-G.; Zhao, T.-J.; Guo, S.-Y.; Zhang, P.; Mu, B.: Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. J. Clean. Prod. 203, 746–756 (2018). https://doi.org/10.1016/j.jclepro.2018.08.255

    Article  Google Scholar 

  10. El-Gamal, S.M.A.; Selim, F.A.: Utilization of some industrial wastes for eco-friendly cement production. Sustain. Mater. Technol. 12, 9–17 (2017). https://doi.org/10.1016/j.susmat.2017.03.001

    Article  Google Scholar 

  11. Hassan, A.; Arif, M.; Shariq, M.: Use of geopolymer concrete for a cleaner and sustainable environment—a review of mechanical properties and microstructure. J. Clean. Prod. 223, 704–728 (2019). https://doi.org/10.1016/J.JCLEPRO.2019.03.051

    Article  Google Scholar 

  12. Provis, J.L.; Palomo, A.; Shi, C.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78, 110–125 (2015). https://doi.org/10.1016/j.cemconres.2015.04.013

    Article  Google Scholar 

  13. Zhao, R.; Sanjayan, J.G.: Geopolymer and Portland cement concretes in simulated fire. Mag. Concr. Res. 63, 163–173 (2011)

    Article  Google Scholar 

  14. Sarker, P.K.; Kelly, S.; Yao, Z.: Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater. Des. 63, 584–592 (2014). https://doi.org/10.1016/j.matdes.2014.06.059

    Article  Google Scholar 

  15. Saxena, S.K.; Kumar, M.; Singh, N.B.: Fire resistant properties of alumino silicate geopolymer cement mortars. Mater. Today Proc. 4, 5605–5612 (2017). https://doi.org/10.1016/j.matpr.2017.06.018

    Article  Google Scholar 

  16. Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Rodriguez, J.F.; Carmona, M.; Al-Manasir, N.; Kjøniksen, A.-L.: Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Convers. Manag. 133, 56–66 (2017). https://doi.org/10.1016/j.enconman.2016.11.061

    Article  Google Scholar 

  17. Hertz, K.D.: Concrete strength for fire safety design. Mag. Concr. Res. (2005). https://doi.org/10.1680/macr.2005.57.8.445

    Article  Google Scholar 

  18. Mendes, A.; Sanjayan, J.; Collins, F.: Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures. Mater. Struct. 41, 345–350 (2008). https://doi.org/10.1617/s11527-007-9247-8

    Article  Google Scholar 

  19. Rivera, O.G.; Long, W.R.; Weiss Jr., C.A.; Moser, R.D.; Williams, B.A.; Torres-Cancel, K.; Gore, E.R.; Allison, P.G.: Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cem. Concr. Res. 90, 43–51 (2016). https://doi.org/10.1016/j.cemconres.2016.09.013

    Article  Google Scholar 

  20. Richardson, I.G.: The calcium silicate hydrates. Cem. Concr. Res. 38, 137–158 (2008). https://doi.org/10.1016/j.cemconres.2007.11.005

    Article  Google Scholar 

  21. Myers, R.J.; Bernal, S.A.; San Nicolas, R.; Provis, J.L.: Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29, 5294–5306 (2013). https://doi.org/10.1021/la4000473

    Article  Google Scholar 

  22. Hassan, A.; Arif, M.; Shariq, M.: Influence of microstructure of geopolymer concrete on its mechanical properties—a review. In: Kumar Shukla, S., Barai, S.V., Mehta, A. (eds.) Advances in Sustainable Construction Materials and Geotechnical Engineering. Lecture Notes in civil engineering. Springer, Berlin (2020)

    Google Scholar 

  23. Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K.: Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37, 1583–1589 (2007). https://doi.org/10.1016/j.cemconres.2007.08.021

    Article  Google Scholar 

  24. Lie, T.T.; Rowe, T.J.; Lin, T.D.: Residual strength of fire-exposed reinforced concrete columns. ACI Eval. Repair Fire Damage Concr. 92, 153–174 (1986)

    Google Scholar 

  25. Barbosa, V.F.F.; MacKenzie, K.J.D.: Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 38, 319–331 (2003). https://doi.org/10.1016/S0025-5408(02)01022-X

    Article  Google Scholar 

  26. Kashani, A.; Ngo, T.D.; Walkley, B.; Mendis, P.: Thermal performance of calcium-rich alkali-activated materials: a microstructural and mechanical study. Constr. Build. Mater. 153, 225–237 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.119

    Article  Google Scholar 

  27. Rashad, A.M.; Zeedan, S.R.: The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr. Build. Mater. 25, 3098–3107 (2011). https://doi.org/10.1016/j.conbuildmat.2010.12.044

    Article  Google Scholar 

  28. Kong, D.L.Y.; Sanjayan, J.G.: Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. (2008). https://doi.org/10.1016/j.cemconcomp.2008.08.001

    Article  Google Scholar 

  29. Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F.: Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.01.043

    Article  Google Scholar 

  30. Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A.: Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater. J. (2011). https://doi.org/10.14359/51664217

    Article  Google Scholar 

  31. Shi, C.: Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26, 1789–1799 (1996). https://doi.org/10.1016/S0008-8846(96)00174-3

    Article  Google Scholar 

  32. Aydın, S.; Baradan, B.: Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater. Des. 35, 374–383 (2012)

    Article  Google Scholar 

  33. Diaz-Loya,; Allouche, F.; Vaidya, S.: Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 108, 300–306 (2011). https://doi.org/10.14359/51682495

    Article  Google Scholar 

  34. IS:383: Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete (Second Revision). Bureau of Indian Standards, New Delhi (1970)

    Google Scholar 

  35. Eurocode: BS EN 1992-2:2005—Eurocode 2: design of concrete structures—part 2: concrete bridges—design and detailing rules. Eurocode 2, London (2005)

    Google Scholar 

  36. Han, L.-H.; Tan, Q.-H.; Song, T.-Y.: Fire performance of steel reinforced concrete columns. J. Struct. Eng. 141, 04014128 (2015). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001081

    Article  Google Scholar 

  37. Zha, X.X.: Three-dimensional non-linear analysis of reinforced concrete members in fire. Build. Environ. 38, 297–307 (2003). https://doi.org/10.1016/S0360-1323(02)00059-8

    Article  Google Scholar 

  38. Li, L.; Purkiss, J.: Stress–strain constitutive equations of concrete material at elevated temperatures. Fire Saf. J. 40, 669–686 (2005). https://doi.org/10.1016/j.firesaf.2005.06.003

    Article  Google Scholar 

  39. Kriven, W.M.; Bell, J.L.; Gordon, M.: Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites. Ceram. Trans. 153, 227–250 (2012)

    Article  Google Scholar 

  40. Assi, L.N.; Eddie Deaver, E.; Ziehl, P.: Effect of source and particle size distribution on the mechanical and microstructural properties of fly ash-based geopolymer concrete. Constr. Build. Mater. 167, 372–380 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.193

    Article  Google Scholar 

  41. Yunsheng, Z.; Wei, S.; Zongjin, L.: Preparation and microstructure of K-PSDS geopolymeric binder. Colloids Surf. A Physicochem. Eng. Asp. 302, 473–482 (2007). https://doi.org/10.1016/j.colsurfa.2007.03.031

    Article  Google Scholar 

  42. Puertas, F.; Fernández-Jiménez, A.: Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Compos. 25, 287–292 (2003). https://doi.org/10.1016/S0958-9465(02)00059-8

    Article  Google Scholar 

  43. Fernández-Jiménez, A.; Palomo, A.; Criado, M.: Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35, 1204–1209 (2005). https://doi.org/10.1016/j.cemconres.2004.08.021

    Article  Google Scholar 

  44. Fernández-Jiménez, A.; Palomo, A.: Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem. Concr. Res. 35, 1984–1992 (2005). https://doi.org/10.1016/j.cemconres.2005.03.003

    Article  Google Scholar 

  45. Criado, M.; Fernández-Jiménez, A.; de la Torre, A.G.; Aranda, M.A.G.; Palomo, A.: An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 37, 671–679 (2007). https://doi.org/10.1016/j.cemconres.2007.01.013

    Article  Google Scholar 

  46. Bernal, S.A.; Provis, J.L.; Walkley, B.; San Nicolas, R.; Gehman, J.D.; Brice, D.G.; Kilcullen, A.R.; Duxson, P.; van Deventer, J.S.J.: Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 53, 127–144 (2013). https://doi.org/10.1016/j.cemconres.2013.06.007

    Article  Google Scholar 

  47. Diaz, E.I.; Allouche, E.N.; Eklund, S.: Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89, 992–996 (2010). https://doi.org/10.1016/j.fuel.2009.09.012

    Article  Google Scholar 

  48. Kong, D.L.Y.; Sanjayan, J.G.: Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 30, 986–991 (2008). https://doi.org/10.1016/j.cemconcomp.2008.08.001

    Article  Google Scholar 

  49. Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A.: The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 35, 609–613 (2005). https://doi.org/10.1016/j.cemconres.2004.06.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A., Arif, M. & Shariq, M. Mechanical Behaviour and Microstructural Investigation of Geopolymer Concrete After Exposure to Elevated Temperatures. Arab J Sci Eng 45, 3843–3861 (2020). https://doi.org/10.1007/s13369-019-04269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04269-9

Keywords

Navigation