Skip to main content
Log in

Tunable Terahertz Circularly Polarized Dielectric Resonator Antenna with the Higher Order Modes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A tunable terahertz (THz) dielectric resonator (DR) antenna (DRA) with circular polarization operating with multiple higher order modes is numerically studied and implemented. A rectangular DRA (RDRA) is designed with a length to width aspect ratio of the DR allowing the operation with the higher order modes. The RDRA provides the triple band response. The corners of the rectangular DR are perturbed diagonally and the generated electric and magnetic dipoles are controlled in the manner that the operating bands can be merged. The merging of the operating bands provides a wide impedance bandwidth. Also, the diagonal perturbation of the rectangular DR generates the orthogonal degenerate components of the operating modes which results in circular polarization. The different faces of the perturbed DR are coated with the graphene material. This allows the controlling of impedance matching and helps in achieving the wide overlapping impedance and axial ratio (AR) bandwidth along with the tunability. The antenna provides \(9.99\mathbf{\%} (3.3688-3.7232 \boldsymbol{T}\boldsymbol{H}\boldsymbol{z})\) impedance bandwidth and \(1.814\mathbf{\%} \left(3.6707-3.7379 \boldsymbol{T}\boldsymbol{H}\boldsymbol{z}\right)\) 3 dB AR bandwidth. The higher order modes result in providing the high gain of around 8 dBi and radiation efficiency around 80 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no data available with this research work.

Code Availability

There is no code available with this research work.

References

  1. Khan MS, Varshney G, Giri P (2021) Altering the multimodal resonance in ultrathin silicon ring fo Tunable THz Biosensing. IEEE Trans Nanobiosci. Accepted. https://doi.org/10.1109/TNB.2021.3105561

  2. Pawar AY, Sonawane DD, Erande KB, Derle DV (2013) Terahertz technology and its applications. Drug Invent Today 5:157–163. https://doi.org/10.1016/j.dit.2013.03.009

    Article  Google Scholar 

  3. Varshney G (2020) Tunable terahertz dielectric resonator antenna. Silicon. https://doi.org/10.1007/s12633-020-00577-0

  4. Abohmra A, Abbas HT, Kazim J, ur R et al (2021) An ultrawideband microfabricated gold-based antenna array for terahertz communication. IEEE Antennas Wirel Propag Lett 14:1–1. https://doi.org/10.1109/lawp.2021.3072562

    Article  Google Scholar 

  5. Das V, Rawat S (2021) Modified rectangular planar antenna with stubs and defected ground structure for THz applications. Optik (Stuttg) :167292. https://doi.org/10.1016/j.ijleo.2021.167292

  6. Singhal S (2021) CPW Fed Jasmine shaped superwideband terahertz antenna for pattern diversity applications. Opt Int J Light Electron Opt. https://doi.org/10.1016/j.ijleo.2021.166356

    Article  Google Scholar 

  7. Shalini M, Ganesh Madhan M (2021) A compact antenna structure for circular polarized terahertz radiation. Optik (Stuttg) 231:166393. https://doi.org/10.1016/j.ijleo.2021.166393

    Article  CAS  Google Scholar 

  8. Keshwala U, Ray K, Rawat S (2021)Ultra-wideband mushroom shaped half-sinusoidal antenna for THz applications. Optik (Stuttg) 228:166156. https://doi.org/10.1016/j.ijleo.2020.166156

    Article  CAS  Google Scholar 

  9. Kiani N, Hamedani FT, Rezaei P (2021) Polarization controlling method in reconfigurable graphene-based patch four-leaf clover-shaped antenna. Opt Int J Light Electron Opt. https://doi.org/10.1016/j.ijleo.2021.166454

    Article  Google Scholar 

  10. G JN, Madhan MG (2021) Graphene based microstrip antenna for triple and quad band operation at terahertz frequencies. Opt Int J Light Electron Opt :166360. https://doi.org/10.1016/j.ijleo.2021.166360

  11. Shamim SM, Das S, Hossain MA, Madhav BTP (2021) Investigations on graphene-based Ultra-Wideband (UWB) microstrip patch antennas for Terahertz (THz) applications. Plasmonics. https://doi.org/10.1007/s11468-021-01423-8

  12. Gupta R, Varshney G, Yaduvanshi RS (2021) Tunable terahertz circularly polarized dielectric resonator antenna. Optik (Stuttg) 239:166800. https://doi.org/10.1016/j.ijleo.2021.166800

    Article  CAS  Google Scholar 

  13. Varshney G, Gotra S, Kaur J et al (2019) Obtaining the circular polarization in a nano-dielectric resonator antenna for photonics applications. Semicond Sci Technol 34:07LT01. https://doi.org/10.1088/1361-6641/ab1fd1

    Article  CAS  Google Scholar 

  14. Kiani N, Tavakkol Hamedani F, Rezaei P et al (2020) Polarization controling approach in reconfigurable microstrip graphene-based antenna. Optik (Stuttg) 203:163942. https://doi.org/10.1016/j.ijleo.2019.163942

    Article  CAS  Google Scholar 

  15. Naghdehforushha SA, Moradi G (2019) An improved method to null-fill H-plane radiation pattern of graphene patch THz antenna utilizing branch feeding microstrip line. Optik (Stuttg) 181:21–27. https://doi.org/10.1016/j.ijleo.2018.11.155

    Article  CAS  Google Scholar 

  16. Bala R, Marwaha A (2016) Characterization of graphene for performance enhancement of patch antenna in THz region. Optik (Stuttg) 127:2089–2093. https://doi.org/10.1016/j.ijleo.2015.11.029

    Article  CAS  Google Scholar 

  17. Varshney G, Debnath S, Sharma AK (2020) Tunable circularly polarized graphene antenna for THz applications. Optik (Stuttg) 223:165412. https://doi.org/10.1016/j.ijleo.2020.165412

    Article  CAS  Google Scholar 

  18. Varshney G, Gotra S, Pandey VS, Yaduvanshi RS (2019)Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Commun Netw 21:100246. https://doi.org/10.1016/j.nancom.2019.05.003

  19. Walther M, Cooke DG, Sherstan C et al (2007) Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys Rev B  Condens Matter Mater Phys 76:1–9. https://doi.org/10.1103/PhysRevB.76.125408

    Article  CAS  Google Scholar 

  20. Varshney G (2020) Wideband THz absorber: by merging the resonance of dielectric cavity and graphite disk resonator. IEEE Sens J 21:1635–1643. https://doi.org/10.1109/JSEN.2020.3017454

    Article  Google Scholar 

  21. Soni AK, Varshney G (2020) Multiband generation and absorption enhancement in a graphite-based metal-free absorber. Plasmonics. https://doi.org/10.1007/s11468-020-01286-5

  22. Gotra S, Varshney G, Pandey VS, Yaduvanshi RS (2019)Super-wideband multi-input–multi-output dielectric resonator antenna. IET Microwaves Antennas Propag 14:21–27. https://doi.org/10.1016/j.jallcom.2008.03.118

    Article  CAS  Google Scholar 

  23. Kumar R, Varshney G, Yaduvanshi RS et al (2020)Dual-band dielectric resonator antenna with multi- frequency circular polarization. IET Microwaves Antennas Propag 14:435–439

  24. Petosa A, Thirakoune S (2011) Rectangular dielectric resonator antennas with enhanced gain. IEEE Trans Antennas Propag 59:1385–1389. https://doi.org/10.1109/TAP.2011.2109690

    Article  Google Scholar 

  25. Varshney G, Pandey VS, Yaduvanshi RS, Kumar L (2017) Wide band circularly polarized dielectric resonator antenna with stair-shaped slot excitation. IEEE Trans Antennas Propag 65:1380–1383. https://doi.org/10.1109/TAP.2016.2635619

    Article  Google Scholar 

  26. Gotra S, Varshney G, Yaduvanshi RS, Pandey VS (2019)Dual-band circular polarisation generation technique with the miniaturisation of a rectangular dielectric resonator antenna. IET Microwaves Antennas Propag 13:1742–1748. https://doi.org/10.1049/iet-map.2019.0030

    Article  Google Scholar 

  27. Gotra S, Pandey VS, Yaduvanshi RS (2021) A wideband graphene coated dielectric resonator antenna with circular polarization generation technique for THz applications. Superlattices Microstruct 150:106754. https://doi.org/10.1016/j.spmi.2020.106754

    Article  CAS  Google Scholar 

  28. Pan YM, Leung KW, Luk KM (2011) Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode. IEEE Trans Antennas Propag 59:2780–2788. https://doi.org/10.1109/TAP.2011.2158962

    Article  Google Scholar 

  29. Ngan HS, Fang XS, Leung KW (2012) Design of dual-band circularly polarized dielectric resonator antenna using a higher-order mode. In: Proc IEEE-APS APWC, Cape Town, pp 424–427

  30. Fang X, Leung KW, Lim EH (2014)Singly-fed dual-band circularly polarized dielectric resonator antenna. IEEE Antennas Wirel Propag Lett 13:995–998

    Article  Google Scholar 

  31. Liu Y, Weng Z, Zhang C, Chen G (2019) A novel millimeter-wave dual-band circularly polarized dielectric resonator antenna. Int J RF Microw Comput Eng 29:1–7. https://doi.org/10.1002/mmce.21871

    Article  Google Scholar 

  32. Chen HN, Song JM, Park JD (2019) A compact circularly polarized MIMO dielectric resonator antenna over electromagnetic band-gap surface for 5G applications. IEEE Access 7:140889–140898. https://doi.org/10.1109/ACCESS.2019.2943880

    Article  Google Scholar 

  33. Gale JD, Geim AK, Novoselov KS et al (2012) The rise of graphene. Rev Mod Phys 58:710–734. https://doi.org/10.1016/j.jmps.2010.02.008

    Article  CAS  Google Scholar 

  34. Hanson GW (2008) Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56:747–757. https://doi.org/10.1109/TAP.2008.917005

    Article  Google Scholar 

  35. Varshney G (2020) Reconfigurable graphene antenna for THz applications: a mode conversion approach. Nanotechnology 31:135208. https://doi.org/10.1088/1361-6528/ab60cc

    Article  CAS  PubMed  Google Scholar 

  36. Marcatili EAJ (1969) Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst Tech J 48:2071–2102. https://doi.org/10.1002/j.1538-7305.1969.tb01166.x

    Article  Google Scholar 

  37. Chang T, Kiang J (2009) Bandwidth broadening of dielectric resonator antenna by merging adjacent bands. IEEE Trans Antennas Propag 57:3316–3320

  38. Pan YM, Leung KW, Lu K (2019) Study of resonant modes in rectangular dielectric resonator antenna based on radar cross section. IEEE Trans Antennas Propag 67:4200–4205. https://doi.org/10.1109/TAP.2019.2911198

    Article  Google Scholar 

  39. Jafari Chashmi M, Rezaei P, Kiani N (2020)Y-shaped graphene-based antenna with switchable circular polarization. Optik (Stuttg) 200:163321. https://doi.org/10.1016/j.ijleo.2019.163321

    Article  CAS  Google Scholar 

  40. Varshney G, Yaduvanshi RS, Pandey VS (2015) Gain and bandwidth controlling of dielectric slab rectangular dielectric resonator antenna. In: IEEE International Conference INDICON, Delhi

Download references

Author information

Authors and Affiliations

Authors

Contributions

This is single authored manuscript without any division in contribution.

Corresponding author

Correspondence to Gaurav Varshney.

Ethics declarations

Conflicts of Interest/Competing Interests

There is no conflict of interest.

Ethics Approval

Not Applicable.

Consent to Participate

Yes.

Consent for Publication

Yes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwanath, Varshney, G. & Sahana, B.C. Tunable Terahertz Circularly Polarized Dielectric Resonator Antenna with the Higher Order Modes. Silicon 14, 6279–6289 (2022). https://doi.org/10.1007/s12633-021-01398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01398-5

Keywords

Navigation